完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>
標(biāo)簽 > 薄膜
薄膜是一種薄而軟的透明薄片。用塑料、膠粘劑、橡膠或其他材料制成。薄膜科學(xué)上的解釋為:由原子,分子或離子沉積在基片表面形成的2維材料。例:光學(xué)薄膜、復(fù)合薄膜、超導(dǎo)薄膜、聚酯薄膜、尼龍薄膜、塑料薄膜等等。薄膜被廣泛用于電子電器,機(jī)械,印刷等行業(yè)。
文章:259個(gè) 瀏覽:29732次 帖子:20個(gè)
多晶碳化硅和非晶碳化硅在薄膜沉積方面各具特色。多晶碳化硅以其廣泛的襯底適應(yīng)性、制造優(yōu)勢(shì)和多樣的沉積技術(shù)而著稱;而非晶碳化硅則以其極低的沉積溫度、良好的化...
半導(dǎo)體薄膜沉積技術(shù)的優(yōu)勢(shì)和應(yīng)用
在半導(dǎo)體制造業(yè)這一精密且日新月異的舞臺(tái)上,每一項(xiàng)技術(shù)都是推動(dòng)行業(yè)躍進(jìn)的關(guān)鍵舞者。其中,原子層沉積(ALD)技術(shù),作為薄膜沉積領(lǐng)域的一顆璀璨明星,正逐步成...
RS-ALD技術(shù)制備的Al2O3薄膜在TOPCon電池邊緣鈍化中的應(yīng)用研究
硅太陽能電池和組件在光伏市場(chǎng)占主導(dǎo),但半電池切割產(chǎn)生的新表面會(huì)加劇載流子復(fù)合,影響電池效率,邊緣鈍化技術(shù)可解決此問題。Al2O3薄膜穩(wěn)定性高、介電常數(shù)高...
薄膜電容以金屬箔為電極,具有無極性、高絕緣阻抗和優(yōu)異頻率特性,是電子產(chǎn)品中不可缺的關(guān)鍵元件,能提高電路穩(wěn)定性和信號(hào)傳輸質(zhì)量,使電子產(chǎn)品更加耐用。
耐高溫高導(dǎo)熱高絕緣低介電聚酰亞胺PI膜特性用途及知名品牌
耐高溫導(dǎo)熱聚酰亞胺薄膜,作為一種高性能材料,具有一系列獨(dú)特的特性和廣泛的用途。以下是對(duì)其特性和用途的詳細(xì)闡述:一、特性耐高溫性:聚酰亞胺薄膜具有極高的熱...
點(diǎn)光譜共焦測(cè)厚系統(tǒng):薄膜厚度測(cè)量的創(chuàng)新利器
光譜共焦傳感器不受薄膜材料光學(xué)特性的過多干擾,無論是透明薄膜還是具有一定吸光性的薄膜,都可以進(jìn)行有效的測(cè)量。
黃色外殼薄膜電容與安規(guī)X電容外觀雖然相似但不是同一種電容,薄膜電容采用塑料薄膜作介質(zhì),不需要安規(guī)認(rèn)證;安規(guī)X電容用于抗干擾,需強(qiáng)制安規(guī)認(rèn)證,獲得安規(guī)認(rèn)證...
薄膜電容在電子設(shè)備中重要,由金屬電極和介質(zhì)塑料薄膜材料構(gòu)成,薄膜電容的薄膜厚度影響性能,選購(gòu)需根據(jù)應(yīng)用場(chǎng)合和參數(shù)挑選的薄膜電容。
不同厚度的ITO薄膜光學(xué)和電學(xué)性能對(duì)光伏電池的影響
ITO由于其高透過率和導(dǎo)電性,已廣泛應(yīng)用于太陽能電池領(lǐng)域。ITO薄膜的厚度對(duì)其光學(xué)性能有顯著影響,隨著膜厚增加,近紅外區(qū)域的透過率下降,反射率在波長(zhǎng)高于...
薄膜電容在電子設(shè)備中作用關(guān)鍵,但易損壞。損壞后會(huì)導(dǎo)致電路性能下降、設(shè)備發(fā)熱異常、信號(hào)失真與干擾及電子設(shè)備頻繁重啟,影響電子產(chǎn)品運(yùn)行和使用體驗(yàn)。因此在使用...
薄膜發(fā)電原理主要基于光電效應(yīng)(光伏效應(yīng))以及可能的熱電效應(yīng)和壓電效應(yīng),具體闡述如下:
高溫易致電子產(chǎn)品損壞,尤其是薄膜電容等電子元件。高溫下材料老化、熱應(yīng)力、散熱不良等因素易引發(fā)薄膜電容熱敏現(xiàn)象,影響電氣性能。需保持電子產(chǎn)品正常工作溫度,...
在太陽能電池的研究中,提高電池的光電轉(zhuǎn)換效率是至關(guān)重要的目標(biāo)。四點(diǎn)探針法和TLM傳輸法兩種測(cè)試方法在研究晶硅太陽能電池的薄膜方阻均一性和摻雜前后接觸電阻...
薄膜電容是電子元件重要成員,廣泛用于電路系統(tǒng)。雖留有余量,但長(zhǎng)期超額定電壓會(huì)縮短其使用時(shí)長(zhǎng)。需嚴(yán)控電壓,選合適型號(hào)和規(guī)格,做好維護(hù),以保障電路系統(tǒng)正常運(yùn)行。
編輯推薦廠商產(chǎn)品技術(shù)軟件/工具OS/語言教程專題
電機(jī)控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動(dòng)駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機(jī) | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機(jī) | PID | MOSFET | 傳感器 | 人工智能 | 物聯(lián)網(wǎng) | NXP | 賽靈思 |
步進(jìn)電機(jī) | SPWM | 充電樁 | IPM | 機(jī)器視覺 | 無人機(jī) | 三菱電機(jī) | ST |
伺服電機(jī) | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網(wǎng) | 國(guó)民技術(shù) | Microchip |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |