資料介紹
Inventors have long dreamed of creating machines that think. This desire dates back to at least the time of ancient Greece. The mythical figures Pygmalion, Daedalus, and Hephaestus may all be interpreted as legendary inventors, and Galatea, Talos, and Pandora may all be regarded as artificial life (Ovid and Martin, 2004; Sparkes, 1996; Tandy, 1997)。 When programmable computers were first conceived, people wondered whether such machines might become intelligent, over a hundred years before one was built (Lovelace, 1842)。 Today, artificial intelligence (AI) is a thriving field with many practical applications and active research topics. We look to intelligent software to automate routine labor, understand speech or images, make diagnoses in medicine and support basic scientific research. In the early days of artificial intelligence, the field rapidly tackled and solved problems that are intellectually difficult for human beings but relatively straightforward for computers—problems that can be described by a list of formal, math- ematical rules. The true challenge to artificial intelligence proved to be solving the tasks that are easy for people to perform but hard for people to describe formally—problems that we solve intuitively, that feel automatic, like recognizing spoken words or faces in images. This book is about a solution to these more intuitive problems. This solution is to allow computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined in terms of its relation to simpler concepts. By gathering knowledge from experience, this approach avoids the need for human operators to formally specify all of the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how theseconcepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning.
- 《平板顯示技術(shù)書籍》應根裕主編 0次下載
- Learning MATLAB英文版電子資料下載 0次下載
- 基于雙估計器的Speedy Q-learning算法 2次下載
- uCOS-III中文版及英文版書籍下載 0次下載
- 冰點還原精靈(Deep Freeze) DFS7.2官方原版+注冊碼 0次下載
- 《智能儀器設計實驗指導書》電子書籍.pdf 0次下載
- 學習射頻必須要讀的書籍推薦 49次下載
- 本科畢業(yè)設計論文書寫規(guī)范 4次下載
- [android.開發(fā)書籍].OReilly.-.Learnin 1次下載
- uCOS-ii中文書 0次下載
- ucos-ii中文書籍 6次下載
- Xilinx_ISE9.1使用全流程中文書 0次下載
- 基于deep_learning的語音識別 22次下載
- Deep Web數(shù)據(jù)源自動分類
- LabVIEW for Everyone(經(jīng)典英文書籍)
- 人工智能、機器學習和深度學習是什么 1369次閱讀
- 怎樣使用Bevy和dfdx解決經(jīng)典的Cart Pole問題呢 679次閱讀
- 如何使用Excel和TF實現(xiàn)Transformer詳細步驟說明 4026次閱讀
- Linux學習書籍推薦Linux就該這么學 4843次閱讀
- 為 Learning-to-Rank 打造的可擴展 TensorFlow 庫 4156次閱讀
- 通過深度學習方法為黑白老照片自動上色,帶我們重新憶起那段老時光! 1.3w次閱讀
- Q Learning算法學習 3692次閱讀
- 兼具動態(tài)規(guī)劃DP和蒙特卡洛MC優(yōu)點的TD Learning算法 3495次閱讀
- 關(guān)于TD Learning算法的分析 1920次閱讀
- 機器學習算法與Python學習簡單的編碼規(guī)范 3695次閱讀
- 模擬電路書籍推薦排行榜 4w次閱讀
- 軟件測試書籍有哪些_軟件測試書籍推薦 1.5w次閱讀
- c語言入門書籍推薦 4.9w次閱讀
- java入門經(jīng)典書籍推薦 1.9w次閱讀
- Z1上搭建二值神經(jīng)網(wǎng)絡(BNN) 4104次閱讀
下載排行
本周
- 1DC電源插座圖紙
- 0.67 MB | 2次下載 | 免費
- 2AN158 GD32VW553 Wi-Fi開發(fā)指南
- 1.51MB | 2次下載 | 免費
- 3AN148 GD32VW553射頻硬件開發(fā)指南
- 2.07MB | 1次下載 | 免費
- 4AN111-LTC3219用戶指南
- 84.32KB | 次下載 | 免費
- 5AN153-用于電源系統(tǒng)管理的Linduino
- 1.38MB | 次下載 | 免費
- 6AN-283: Σ-Δ型ADC和DAC[中文版]
- 677.86KB | 次下載 | 免費
- 7SM2018E 支持可控硅調(diào)光線性恒流控制芯片
- 402.24 KB | 次下載 | 免費
- 8AN-1308: 電流檢測放大器共模階躍響應
- 545.42KB | 次下載 | 免費
本月
- 1ADI高性能電源管理解決方案
- 2.43 MB | 450次下載 | 免費
- 2免費開源CC3D飛控資料(電路圖&PCB源文件、BOM、
- 5.67 MB | 138次下載 | 1 積分
- 3基于STM32單片機智能手環(huán)心率計步器體溫顯示設計
- 0.10 MB | 130次下載 | 免費
- 4使用單片機實現(xiàn)七人表決器的程序和仿真資料免費下載
- 2.96 MB | 44次下載 | 免費
- 53314A函數(shù)發(fā)生器維修手冊
- 16.30 MB | 31次下載 | 免費
- 6美的電磁爐維修手冊大全
- 1.56 MB | 24次下載 | 5 積分
- 7如何正確測試電源的紋波
- 0.36 MB | 17次下載 | 免費
- 8感應筆電路圖
- 0.06 MB | 10次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935121次下載 | 10 積分
- 2開源硬件-PMP21529.1-4 開關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設計
- 1.48MB | 420062次下載 | 10 積分
- 3Altium DXP2002下載入口
- 未知 | 233088次下載 | 10 積分
- 4電路仿真軟件multisim 10.0免費下載
- 340992 | 191367次下載 | 10 積分
- 5十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183335次下載 | 10 積分
- 6labview8.5下載
- 未知 | 81581次下載 | 10 積分
- 7Keil工具MDK-Arm免費下載
- 0.02 MB | 73810次下載 | 10 積分
- 8LabVIEW 8.6下載
- 未知 | 65988次下載 | 10 積分
評論