隨著超大規模集成電路工藝的發展,人類已經進入了超深亞微米時代。先進的工藝使得人們能夠把包括處理器、存儲器、模擬電路、接口邏輯甚至射頻電路集成到一個大規模的芯片上,形成所謂的SoC(片上系統)。作為SoC重要組成部分的嵌入式存儲器,在SoC中所占的比重(面積)將逐漸增大。下面就隨小編一起來了解一下相關內容吧。
近期臺積電技術長孫元成在其自家技術論壇中,首次揭露臺積電研發多年的eMRAM(嵌入式磁阻式隨機存取存儲)和eRRAM(嵌入式電阻式存儲器)將分別訂于明后年進行風險性試產。預計試產主要采用22nm工藝。這種次世代存儲將能夠為物聯網、行動裝置、高速運算電腦和智能汽車等四領域所提供效能更快和耗電更低的存儲效能。臺積電此舉讓嵌入式存儲器再度回到人們的視線中。本文將為你闡述嵌入式存儲器的前世今生。
何為嵌入式存儲器
嵌入式存儲器現在已經不是一個新的概念了。相對于片外存儲器,嵌入式存儲器是指集成在片內與系統中各個邏輯、混合信號等IP共同組成單一芯片中的存儲器?,F已經成為SOC芯片的基本組成部分,幾乎今天每個SOC芯片中嵌入式存儲器都占有一定比重。
按照掉電后數據是否會丟失,可將嵌入式存儲器分為兩大類,一類是揮發性存儲器,另一類則是非揮發性存儲器。揮發性存儲器是指掉電后數據會丟失,主要包括速度快、功耗低的SRAM和高密度的DRAM。而非揮發性存儲器則剛好相反,其在實際應用中主要包括eFlash、EEPROM以及eMRAM、eRRAM、ePRAM等次世代存儲器。
雖然都是存儲器,但二者還是有些許不同。嵌入式存儲器和分立式存儲器最重要的不同之處在于嵌入式存儲器往往跟應用IC自身的工藝特性條件有很大關系,比如用90nm和用45nm工藝做出來的芯片,其內部嵌入式存儲器大小差別也是很大的。而分立式存儲器件則主要圍繞存儲器器件工藝進行優化。
隨著信息技術的發展,嵌入式存儲器在SOC中的面積所占比重也在逐年增加,從圖一可以看出,從1999年平均的20%上升到2007年的60-70%乃至2014年的90%的面積??梢钥闯?,嵌入式存儲器對于芯片系統性能的影響越來越大。
圖一 嵌入式存儲器在SOC中所占芯片面積的比重
嵌入式存儲器發展歷程
早在上世紀六七十年代,那時的半導體行業主要由IDM占據,每個公司從芯片設計、制造到封裝都自己做。各家都是獨立開發自己的工藝、IP和相關芯片。
早期人們對于系統的要求包括集成度、速度、功耗都不高,因此分立式存儲器在那時占據主流位置,成為各應用廠家的首選。
后來到了上世紀八九十年代,fabless和foundry模式開始出現,基于設計的復雜性以及產品設計周期兩方面考慮,開始出現第三方的獨立IP供應商,如ARM公司。
隨著芯片集成度的不斷提升,反過來給分立存儲器帶來了兩大挑戰:1)集成度和工藝開始允許片內集成更多的存儲器;2)存儲器的速度發展遠遠落后于MPU的速度,MPU速度以每年60%在成長,而存儲器只有10%。二者速度之間增長的差異,如圖二所示。
圖二 MPU于DRAM隨時代變遷而發展的關系圖
同時片內存儲器具有靈活簡單的接口、更低延遲和更寬總線,更為重要的是還能節省系統的空間大小,使得它日益受到集成電路設計師的青睞。在這一時期嵌入式存儲器主要以SRAM和DRAM兩種形式呈現。
到了九十年代中期,Intel做了一項重大創新,將片外高速緩沖器(Cache)集成到了片內。這直接導致當時一大批分立的片外高速緩沖存儲器廠商倒閉,成為嵌入式存儲器代替分立式存儲器的標志性事件。
到了今天一顆手機處理器超過90%的面積由各種嵌入式SRAM如寄存器堆,一二級緩存甚至三級緩存組成,嵌入式SRAM也成為晶圓代工廠的工藝技術衡量指標。由于SRAM由六個晶體管組成,而DRAM只有一個晶體管加一個電容組成,具有面積優勢,當時很多廠商其實都在思考將DRAM嵌入到系統的可能性。
九十年代,當時IBM,Toshiba等大公司都在嘗試開發嵌入式DRAM。但開發并不順利,開發的難點在于DRAM工藝與常規邏輯工藝差異很大,工藝的整合難度相當大。雖然到今天,隨著工藝的進步,使得一些公司像TSMC也在重新審視eDRAM的可行性,并有部分成果,但是主流的設計還是沒有將eDRAM納入必備選項。
后來隨著消費類電子大幅成長,不斷擴大的存儲需求刺激著嵌入式閃存(eFlash)不斷發展。從早期,設計人員將程序簡單固化在ROM中,到后來的OTP,EEPROM乃至現在很火的高密度eFlash內存。嵌入式內存能夠有效存儲代碼和數據,而且掉電后還不丟失,對很多應用都有重要意義。
然而走到今天,現有存儲技術暴露的一些缺陷,比如SRAM、DRAM的問題在于其易失性,斷電后信息會丟失且易受電磁輻射干擾,這一缺陷極大限制了其在國防航空航天等一系列關鍵高科技領域的應用。而FLASH、EEPROM的寫入速度慢,且寫入算法比較復雜,無法滿足實時處理系統中高速、高可靠性寫入的要求,且功耗較高,無法滿足嵌入式應用的低功耗要求。
新型存儲器躍躍欲試
對于現有信息存儲產品的性能有了更高要求,迫切需要在存儲材料和技術方面取得突破。在這些需求的驅動下,相繼出現了一些新型非易失存儲器,如鐵電存儲器(FRAM)、相變存儲器(PRAM)、磁存儲器(MRAM)、阻變存儲器(RRAM)。雖然說這些是新型存儲器,但從某個角度看,這些存儲器已經存在有一段日子了。
(1)鐵電存儲器(FRAM)
鐵電存儲器是一種掉電后信息不丟失的非易失存儲器,具有高速、高密度、低功耗和抗輻射等優點。其核心基礎是鐵電晶體材料,采用鐵電效應作為其電荷存儲機制,同時擁有隨機存取存儲器(RAM)和非易失性存儲產品的特性。其結構圖如下圖所示。FRAM的工作原理是利用金屬-鐵電-半導體場效應晶體管結構,鐵電薄膜用來替代MOS管中的柵極氧化硅層,鐵電薄膜保持著兩個穩定的極化狀態,分別表示“1”和“0”。
圖三 FRAM結構剖面圖
(2)磁性存儲器(MRAM)
MRAM是利用材料的磁場隨磁場的作用而改變的原理所制成。利用磁存儲單元磁性隧道結(MTJ)的隧穿磁電阻效應來進行存儲。
如下圖四所示,MTJ有三層,最上層為自由層,中間是隧道結,下面是固定層。自由層的磁場極化方向是可以改變的,而固定層的磁場方向固定不變。當自由層與固定層的磁場平行時,存儲單元呈現低阻態;當磁場方向相反時,存儲單元呈現高阻態。MRAM通過檢測存儲單元電阻的高低,來判斷所存數據是0還是1。
圖四 MJT結構示意圖
評論
查看更多