吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

卷積神經(jīng)網(wǎng)絡:可預測混合用藥產(chǎn)生的副作用

EdXK_AI_News ? 來源:未知 ? 作者:工程師郭婷 ? 2018-08-07 10:40 ? 次閱讀

美國斯坦福大學(Stanford University)的計算機科學家設計出一種卷積神經(jīng)網(wǎng)絡,能夠預測混合用藥可能產(chǎn)生的副作用。

這項研究工作對患者具有重大的現(xiàn)實意義。通常,患者為治療一種疾病或者減輕多種病情而服用的藥物越來越多。但問題在于,我們對藥物之間的相互作用知之甚少,由此帶來了巨大風險。據(jù)研究人員介紹,醫(yī)生可選擇的藥物種類繁多,加重了這一問題。她指出,“將一種新藥與其他所有藥物一起測試,這在現(xiàn)實中不可能實現(xiàn),因為針對一種藥物就要進行五千個新實驗。”

這個問題促使研究人員設計了“十邊形”(Decagon)系統(tǒng),它是一種預測不同混合用藥潛在副作用的人工智能應用。他們構建了一個大型卷積神經(jīng)網(wǎng)絡,模擬人體內(nèi)超過19000種蛋白質(zhì)的相互作用及不同藥物與這些蛋白質(zhì)的相互作用。研究人員利用記錄了蛋白質(zhì)-蛋白質(zhì)及藥物-蛋白質(zhì)相互作用的數(shù)據(jù)庫來驅(qū)動該模型。他們還加入了詳細描述某些藥物及混合用藥相關副作用的數(shù)據(jù)庫。

為實現(xiàn)預測功能,他們選擇使用圖卷積神經(jīng)網(wǎng)絡。這種神經(jīng)網(wǎng)絡常用于社交網(wǎng)絡和知識圖譜,但還需要對其進行調(diào)整才能用于計算生物學。“十邊形”系統(tǒng)所用模型納入了對多個邊緣類型的支持,每種類型代表著一種副作用,并采用獨特的權值分配形式,對圖卷積神經(jīng)網(wǎng)絡進行了延伸。

該系統(tǒng)的預測功能還不完美,但在很多例子中都表現(xiàn)了出人意料的準確性。例如,該系統(tǒng)指出混合使用膽固醇藥物阿托伐他汀和降壓藥氨氯匹定可能導致肌肉炎癥。雖然用于開發(fā)這個模型的原始數(shù)據(jù)都沒有表明存在這種副作用,但根據(jù)一篇已發(fā)表的案例研究,這種混合用藥確實會引起肌肉炎癥,導致患者要在加護病房治療69天。

研究人員檢索相似病例的醫(yī)學文獻,發(fā)現(xiàn)了“十邊形”系統(tǒng)預測的前十種副作用中,已經(jīng)有五種得到了證實。但這不表示其他五種預測是錯的,只是還沒有出現(xiàn)記錄的例子。該系統(tǒng)尤為擅長根據(jù)分子相互作用來預測副作用,但如果副作用是基于患者的環(huán)境或者行為,那它的準確性就差一些。總而言之,研究人員發(fā)現(xiàn)“十邊形”系統(tǒng)遠遠優(yōu)于以往基于計算的預測,指出“在964種副作用類型中,我們的系統(tǒng)所做預測分別比其他方法高出了19.7% (AUROC)、22.0% (AUPRC)、36.3% (AP@50)”。

在當前版本,該系統(tǒng)只能預測與藥物對相關的副作用,但研究團隊希望能夠提高軟件性能,對更復雜的藥物組合進行預測。為推動其在臨床環(huán)境中的應用,他們還希望為醫(yī)生和醫(yī)學研究人員構建更具用戶友好性的工具。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:人工智能幫助預測混合用藥的副作用

文章出處:【微信號:AI_News,微信公眾號:人工智能快報】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關推薦

    卷積神經(jīng)網(wǎng)絡與傳統(tǒng)神經(jīng)網(wǎng)絡的比較

    在深度學習領域,神經(jīng)網(wǎng)絡模型被廣泛應用于各種任務,如圖像識別、自然語言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡是兩種常見的模型。 1. 結構差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?742次閱讀

    卷積神經(jīng)網(wǎng)絡的基本概念、原理及特點

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習算法,它在圖像識別、視頻分析、自然語言處理等領域有著廣泛的應用。本文將詳細介紹卷積神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-11 14:38 ?1344次閱讀

    BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的關系

    廣泛應用的神經(jīng)網(wǎng)絡模型。它們各自具有獨特的特點和優(yōu)勢,并在不同的應用場景中發(fā)揮著重要作用。以下是對BP神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡關系的詳細探討,
    的頭像 發(fā)表于 07-10 15:24 ?1738次閱讀

    循環(huán)神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,CNN)是深度學習領域中兩種非常重要的神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-04 14:24 ?1503次閱讀

    卷積神經(jīng)網(wǎng)絡的實現(xiàn)原理

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-03 10:49 ?657次閱讀

    bp神經(jīng)網(wǎng)絡卷積神經(jīng)網(wǎng)絡區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-03 10:12 ?1359次閱讀

    卷積神經(jīng)網(wǎng)絡分類方法有哪些

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等計算機視覺任務。本文將詳細介紹卷積神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-03 09:40 ?554次閱讀

    cnn卷積神經(jīng)網(wǎng)絡分類有哪些

    卷積神經(jīng)網(wǎng)絡(CNN)是一種深度學習模型,廣泛應用于圖像分類、目標檢測、語義分割等領域。本文將詳細介紹CNN在分類任務中的應用,包括基本結構、關鍵技術、常見網(wǎng)絡架構以及實際應用案例。 引言 1.1
    的頭像 發(fā)表于 07-03 09:28 ?741次閱讀

    卷積神經(jīng)網(wǎng)絡激活函數(shù)的作用

    起著至關重要的作用,它們可以增加網(wǎng)絡的非線性,提高網(wǎng)絡的表達能力,使網(wǎng)絡能夠?qū)W習到更加復雜的特征。本文將詳細介紹卷積
    的頭像 發(fā)表于 07-03 09:18 ?1231次閱讀

    卷積神經(jīng)網(wǎng)絡訓練的是什么

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡
    的頭像 發(fā)表于 07-03 09:15 ?519次閱讀

    卷積神經(jīng)網(wǎng)絡的原理與實現(xiàn)

    核心思想是通過卷積操作提取輸入數(shù)據(jù)的特征。與傳統(tǒng)的神經(jīng)網(wǎng)絡不同,卷積神經(jīng)網(wǎng)絡具有參數(shù)共享和局部連接的特點,這使得其在處理圖像等高維數(shù)據(jù)時具有更高的效率和更好的性能。
    的頭像 發(fā)表于 07-02 16:47 ?726次閱讀

    卷積神經(jīng)網(wǎng)絡每一層的作用

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)是一種深度學習算法,廣泛應用于圖像識別、自然語言處理等領域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡每一層的
    的頭像 發(fā)表于 07-02 15:28 ?1780次閱讀

    卷積神經(jīng)網(wǎng)絡的基本結構及其功能

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、視頻分析、自然語言處理等領域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡的基
    的頭像 發(fā)表于 07-02 14:45 ?2562次閱讀

    卷積神經(jīng)網(wǎng)絡的原理是什么

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Network,簡稱CNN)是一種深度學習模型,廣泛應用于圖像識別、語音識別、自然語言處理等領域。本文將詳細介紹卷積神經(jīng)網(wǎng)絡的原
    的頭像 發(fā)表于 07-02 14:44 ?808次閱讀

    卷積神經(jīng)網(wǎng)絡和bp神經(jīng)網(wǎng)絡的區(qū)別

    卷積神經(jīng)網(wǎng)絡(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4715次閱讀
    网上百家乐官网追杀| 做生意大门方位风水| 嘉年华百家乐的玩法技巧和规则| 百家乐官网买隔一数| qq百家乐网络平台| 沙雅县| 真人百家乐什么平台| 在线赌场| 太阳城百家乐杀祖玛| 法库县| 百家乐外套| 挖掘百家乐官网赢钱秘籍| 百家乐哪里可以玩| 百家乐官网21点德州扑克| 百家乐红桌布| 百家乐官网破解软件真的有用吗| 威尼斯人娱乐场五星| 尊龙百家乐官网娱乐| 帝王娱乐城开户| 网上百家乐赢钱公式| 百家乐官网接线玩法| 云鼎百家乐作弊| 百家乐官网桌出租| 大发888线上娱乐城百家乐| 百家乐官网技巧看| 金尊国际娱乐城| 圣安娜百家乐包杀合作| 澳门百家乐官网搏牌规则| 二八杠语音报牌器| 单机百家乐官网游戏下| 网上真钱梭哈| 百家乐真人游戏赌场娱乐网规则 | 海港城百家乐官网的玩法技巧和规则| 大发888 备用6222.com| 百家乐现金网平台排行| 百家乐官网人生信条漫谈| 大发888官网授权网| 百家乐休闲游戏| 百家乐官网高手看百家乐官网| 大发888 dafa888uk.com| 百家乐博彩金|