電感是開關電源中必不可少的器件之一,涉及到磁的理論知識;AC/DC用到的電感有:EMI濾波電感,PFC電感、輸出濾波電感、反激變壓器(實為耦合電感);板上DC/DC用到的電感多為EMI濾波電感、BUCK輸出電感、Boost輸入電感等;
電感的性能參數
電感的基本原理
電感的功能就是以磁場能的形式儲存電能量。以圓柱型線圈為例,簡單介紹下電感的基本原理,
如上圖所示,當恒定電流流過線圈時,根據右手螺旋定則,會形成一個圖示方向的靜磁場。而電感中流過交變電流,產生的磁場就是交變磁場,變化的磁場產生電場,線圈上就有感應電動勢,產生感應電流:
電流變大時,磁場變強,磁場變化的方向與原磁場方向相同,根據楞次定律,產生的感應電流與原電流方向相反,電感電流減小;
電流變小時,磁場變弱,磁場變化的方向與原磁場方向相反,根據楞次定律,產生的感應電流與原電流方向相同,電感電流變大。
最終效果就是電感會阻礙流過的電流產生變化,就是電感對交變電流呈高阻抗。同樣的電感,電流變化率越高,產生的感應電流越大,那么電感呈現的阻抗就越高;如果同樣的電流變化率,不同的電感,如果產生的感應電流越大,那么電感呈現的阻抗就越高。
所以,電感的阻抗于兩個因素有關:一是頻率;二是電感的固有屬性,也就電感的值,也稱為電感。根據理論推導,圓柱形線圈的電感公式如下:
電感的等效模型
對于實際的電感而言,實際電感的特性不僅僅有電感的作用,還有其他因素,如:繞制線圈的導線不是理想導體,存在一定的電阻;電感的磁芯存在一定的熱損耗;電感內部的導體之間存在著分布電容。
因此,需要用一個較為復雜的模型來表示實際電感,常用的等效模型如下:
自諧振頻率
自諧振頻率(Self-Resonance Frequency):由于Cp的存在,與L一起構成了一個諧振電路,其諧振頻率便是電感的自諧振頻率。在自諧振頻率前,電感的阻抗隨著頻率增加而變大;在自諧振頻率后,電感的阻抗隨著頻率增加而變小,就呈現容性。
品質因素
-品質因素(Quality Factor):也就是電感的Q值,電感儲存功率與損耗功率的比,Q值越高,電感的損耗越低,和電感的直流阻抗直接相關的參數。自諧振頻率和Q值是高頻電感的關鍵參數.
Q=ωLrQ=rωL
ωω:角頻率;L:電感值;r:等效電阻
電感尺寸
電感尺寸長*寬*高:正比于L?I2L?I2
L?I2=LI?I=N?B?Ae?H?Ie/N=B?B?Ae?Ie/UL?I2=LI?I=N?B?Ae?H?Ie/N=B?B?Ae?Ie/U
如何減小尺寸:
高頻--電感量小
多相--L(I22)+L(I22)=0.5L?I2L(2I2)+L(2I2)=0.5L?I2
額定電流(溫升電流)
當電感有電流通過的時候,由于損耗的存在,電感發熱而產生溫升,電流越大,溫升越大;在額定的溫度范圍內,允許的最大電流即為溫升電流。
額定電流(溫升電流)通常指線圈溫升40℃得到的直流電流值,該電流值和封裝成正比,和DCR成反比
溫升電流是對電感熱效應的評估,根據焦耳定律,熱效應需要考慮一段時間內的電流對時間的積分;選擇電感時,設計RMS電流不能超過電感溫升電流。
電感量
電感量是衡量電流產生磁通能力的一個參數,通常有20%的誤差
引入磁阻的概念:
Rm=Ie/(U0?Ur?Ae)?L=N2?U0?Ur?Ae/IeRm=Ie/(U0?Ur?Ae)?L=N2?U0?Ur?Ae/Ie
Lg=N2?U0?Ae/IG(鐵氧體磁芯開氣隙電感量)Lg=N2?U0?Ae/IG(鐵氧體磁芯開氣隙電感量)
對于DCDC芯片所使用的電感而言,電感值越大,紋波越小,但尺寸會變大;通常提高開關頻率,可以使用小電感,但開關頻率提高會增加系統損耗,降低效率
飽和電流
增加磁芯的磁導率,可以提高電感值,通常使用鐵磁性材料做磁芯。鐵磁性材料存在磁飽和現象,即當磁場強度超過一定值時,磁感應強度不在增加,即磁導率下降了,也就是電感下降了。在額定電感值范圍內,允許的最大電流即為飽和電流。
飽和電流通常是額定電流的1.3-1.5倍;飽和電流是指在該電流下電感量下降了額定值的30%;
為了保證在設計范圍內電感值穩定,設計峰值電流不能超過電感的飽和電流。為了提高可靠性,降額設計是必須的,通常建議工作值應降額到不高于額定值的80%
直流阻抗(DCR)
直流阻抗(DCR)就是指電感線圈的阻抗,規格書是25℃的測量值,該阻抗是正溫度系數。
電感的種類
-電感根據工藝結構的差別,大體可分為三類
繞線電感(Wire Wound Type)
繞線電感(Wire Wound Type),顧名思義就是把銅線繞在一個磁芯上形成一個線圈,繞線的方式有兩種:圓柱形繞法(Round Wound)和平面形繞法(Flat Wound)
其采用的磁芯可以是:
非磁性材料:例如空氣芯、陶瓷芯,貌似就不能叫磁芯了;這樣電感值較小,但是基本不存在飽和電流
鐵磁性材料:例如鐵氧體、波莫合金等等;合金磁導率比鐵氧體大;鐵磁性材料存在磁飽和現象,有飽和電流。
繞線電感可提供大電流、高感值;磁芯磁導率越大,同樣的感值,繞線就少,繞線少就能降低直流電阻;同樣的尺寸,繞線少可以繞粗,提高電流。
多層片狀電感(Multilayer Type)
多層片狀電感(Multilayer Type)的制作工藝:將鐵氧體或陶瓷漿料干燥成型,交替印刷導電漿料,最后疊層、燒結成一體化結構(Monolithic)。
多層片狀電感的比繞線電感尺寸小,標準化封裝,適合自動化高密度貼裝;一體化結構,可靠性高,耐熱性好。
薄膜電感(Thin Film Type)
薄膜電感采用的是類似于IC制作的工藝,在基底上鍍一層導體膜,然后采用光刻工藝形成線圈,最后增加介質層、絕緣層、電極層,封裝成型。
薄膜器件的制作工藝,如下圖所示:
光刻工藝的精度很高,制作出來的線條更窄、邊緣更清晰。因此,薄膜電感具有:更小的尺寸,008004封裝;更小的Value Step,0.1nH;更小的容差,0.05nH;更好的頻率穩定性
電感的應用
功率電感通常用于DC-DC電路中,通過積累并釋放能量來保持連續的電流。功率電感大都是繞線電感,可以提高大電流、高電感。
多層片狀功率電感也越來越多,通常電感值和電流都較低,優點是成本較低、體積超小,在手機等空間限制較大的產品中有較多應用。
功率電感需要根據所選的DCDC芯片來選型。通常,DCDC芯片的規格書上都有推薦的電感值,以及相關參數的計算,這里不再贅述。
去耦電感也叫Choke,教科書上通常翻譯成扼流圈。去耦電感的作用是濾除線路上的干擾,屬于EMC器件,EMC工程師主要用來解決產品的輻射發射(RE)和傳導發射(CE)的測試問題。去耦電感,通常結構比較簡單,大都是銅絲直接繞在鐵氧體環上。可以分為差模電感和共模電感。
差模電感
差模電感就是普通的繞線電感,用于濾除一些差模干擾,主要就是與電容一起構成LC濾波器,減小電源噪聲。
選擇差模電感需要注意一下幾點:
直流電阻、額定電壓和電流,要滿足工作要求;
結構尺寸滿足產品要求;
通過測試確定噪聲的頻段,根據電感的阻抗曲線選擇電感;
設計LC濾波器,可以做簡單的計算和仿真。
共模電感
共模電感就是在同一個鐵氧體環上繞制兩個匝數相同、繞向相反的線圈。
當有共模成分流過共模電感時,根據右手定則,會在兩個線圈形成方向相同的磁場,相互加強,相當于對共模信號存在較高的感抗;當有差模成分流過共模電感時,根據右手定則,會在兩個線圈形成方向相反的磁場,相互抵消,相當于對差模信號存在較低的感抗。
換一個方式理解:當V+上流過一個頻率的共模干擾,形成的交變磁場,會在另一個線圈上形成一個感應電流,根據左手定則,感應電流的方向與V-上共模干擾的方向相反,就抵消了一部分,減小了共模干擾。
共模電感主要用于雙線或者差分系統,如220V市電、CAN總線、USB信號、HDMI信號等等。用于濾除共模干擾,同時有用的差分信號衰減較小。
共模電感選型需要注意一下幾點:
直流阻抗要低,不能對電壓或有用信號產生較大影響;
用于電源線的話,要考慮額定電壓和電流,滿足工作要求;
通過測試確定共模干擾的頻段,在該頻段內共模阻抗應該較高;、
差模阻抗要小,不能對差分信號的質量產生較大影響;
考慮封裝尺寸,做兼容性設計。例如用于USB信號的共模電感,選擇封裝可以與兩個0402的電阻做兼容,不需要共模電感時,可以直接焊0402電阻,降低成本。
高頻電感
高頻電感主要應用于手機、無線路由器等產品的射頻電路中,從100MHz到6GHz都有應用。高頻電感在射頻電路中主要有以下幾種作用:
匹配(Matching):與電容一起組成匹配網絡,消除器件與傳輸線之間的阻抗失配,減小反射和損耗;
濾波(Filter):與電容一起組成LC濾波器,濾出一些不想要的頻率成分,防止干擾器件工作;
隔離交流(Choke):在PA等有源射頻電路中,將射頻信號與直流偏置和直流電源隔離;
諧振(Resonance):與電容一起構成LC振蕩電路,作為VCO的振蕩源;
巴侖(Balun):即平衡不平衡轉換,與電容一起構成LC巴侖,實現單端射頻信號與差分信號之間的轉換。
選擇高頻電感時,除了需要確定電感值、額定電流、工作溫度、封裝尺寸外,還要關注自諧振頻率、Q值、電感值容差、電感值頻率穩定性。
之前介紹的三種結構,都可以用來制作高頻電感,下面介紹下他們的特點:
多層型
多層型通過燒結,形成一個整體結構,或叫獨石型(Monolithic)
多層片狀電感的,相比于其他兩種就是Q值最低,最大的優勢就是成本低,性價比高,適合于大多數沒有特殊要求的應用。TDK和Taiyo Yuden的高頻電感都只有多層型,沒有繞線型和薄膜型。TDK的MLK系列、Murata的LQG系列、Taiyo Yuden的HK系列,這三個系列的產品基本一樣,最便宜,性價比高。
當然隨著工藝技術的提升,現在也有高Q值系列的多層片狀電感,例如TDK的MHQ系列、太陽誘電的HKQ系列。
TDK的多層電感做的更好更全,還有一個MLG系列,有0402封裝,感值可以做0.3nH,Value Step 0.1nH,容差0.1nH,接近薄膜電感的性能,價格還便宜。
繞線型
隨著現在的工藝水平已經越來越高,繞線電感也可以做到0402封裝。
繞線型工藝,其導線可以做到比多層和薄膜結構粗,因此可以獲得極低的直流電阻。也意味著極高的Q值,同時可以支持較大的電流。將無磁性的陶瓷芯換成鐵氧體磁芯,可以得到較高的感值,可以應用與中頻。
Murata的LQW系列可以做到03015封裝,最小感值1.1nH;Coilcraft的0201DS系列,可以做到0201封裝,號稱世界上最小的繞線電感。
薄膜型
采用光刻工藝,工藝精度極高,因此電感值可以做到很小,尺寸也可以做到很小,精度高,感值穩定,Q值較高。
Murata的LQP系列,可以做到01005封裝,高精度產品的容差可以做到0.05nH,最小感值可以到0.1nH,這三個參數值可以說是當前電感的極限了。其他,像Abracon的ATFC-0201HQ系列也可以做到最小0.1nH。
Murata有三種工藝的高頻電感,選擇了同感值(1.5nH)、同封裝、同容差的電感對比。
可以看出繞線型的Q值明顯高于其他兩種,而薄膜型的電感值的頻率穩定性高于其他兩種。當然,多層型的成本明顯低于其他兩種。
-
電感
+關注
關注
54文章
6153瀏覽量
102684 -
等效模型
+關注
關注
0文章
14瀏覽量
6392
原文標題:廠商與選型軟件
文章出處:【微信號:mcu168,微信公眾號:硬件攻城獅】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
電感基礎知識
電感基礎知識
電感基礎知識及型號區分,Inductor Introduction
電感的基礎知識理解
![<b class='flag-5'>電感</b>的<b class='flag-5'>基礎知識</b>理解](https://file1.elecfans.com/web2/M00/0B/EC/wKgZomc8AjmAHXQcAAAUBa9mQxg852.jpg)
評論