在物聯網高速發展的現在,各個頻段的應用幾乎達到了極致,這就導致了不同模塊之間的相互干擾,對于濾波以及抗干擾性的要求不斷提升。如何避免同頻干擾,成了眾多工程師的難題。
圖1 頻點空間間隔復用示意圖
想要解決同頻干擾問題,通過軟件和硬件兩個方向都可以,本文主要從硬件設計的角度,為解決同頻干擾提供方案。
從硬件的角度來看,想要避免同頻干擾,可以增加可用帶寬,增加帶寬意味著在跳頻的時候有著更多的選擇,劃分信道之間的距離更大,從而避免相互干擾,同時也大大降低了軟件設計的難度。如圖2,以wifi為例,由于頻道較宅,導致頻道復用較為嚴重,在同一區域內最多只能使用三個模塊。
圖2 WiFi 信道劃分
在實際應用中對無線模塊帶寬影響較大的因素有LNA輸入阻抗、PA輸出阻抗、濾波器的阻抗以及天線阻抗。前兩者用戶只能依照原廠給出的參數去匹配,而天線的阻抗則是根據實際應用場景去挑選對應的型號,所以濾波器的阻抗匹配才是電路設計的關鍵。
我們都知道傳輸功率在阻抗匹配時可以才可以到達最大,但在實際設計中往往只能達到某個頻點的阻抗匹配,這是不符合工程應用的。因為相比于在某一個頻點傳輸功率的最大化,一個頻段范圍內均衡的功率傳輸才是更重要的。信號輸出不集中于某一個頻點而是均衡覆蓋一段較寬的頻率范圍不僅能保證模塊在應用時容錯率更強,還能保證量產時的一致性。
現在市面上可用于400-500MHz頻率的濾波器有很多,在這里我們挑選出兩種最典型的濾波器:巴特沃斯和切比雪夫,對比他們的端口阻抗在不同頻率下的變化情況,從而得出該濾波器的使用帶寬,最終選擇在無線通信中最合適的濾波器。
我們做了如下實驗, 圖3、圖4是使用ADS仿真的兩個5階600MHz低通LC濾波器,圖3為巴特沃斯濾波器,圖4為切比雪夫濾波器。
圖3 巴特沃斯濾波器拓撲
圖4 切比雪夫濾波器拓撲
圖5、圖6分別對應他們的端口阻抗與駐波比。
圖5 巴特沃斯濾波器的Smith 、VSWR及S21
圖6 切比雪夫濾波器的Smith 、VSWR及S21
這里可以清楚的看到在史密斯圓環中,兩種濾波器不同頻率下的阻抗并不相同,巴特沃斯濾波器伴隨著頻率的增加,阻抗偏離匹配點;而切比雪夫濾波器因為有諧振電路引起阻抗的突變的,所以阻抗會圍繞在匹配點附近小范圍變化,這就導致切比雪夫濾波器的可用頻段比巴特沃斯濾波器更多。
LM400T模塊以切比雪夫濾波拓撲為模型設計了濾波器電路,其信道能夠覆蓋400MHz~525MHz,且輸出功率保持在18dBm以上,足以達到了信道劃分的要求。
當多組模塊同時工作時即可劃分出多個信道,讓不同組的模塊在不同的信道下通信,模塊之間的通信也不會因為劃分信道較多而受到影響,這就達到了避免同頻干擾的效果。
-
濾波器
+關注
關注
161文章
7860瀏覽量
178931 -
帶寬
+關注
關注
3文章
953瀏覽量
41077 -
信道
+關注
關注
0文章
197瀏覽量
30048 -
同頻干擾
+關注
關注
0文章
5瀏覽量
7335
原文標題:【工程筆記】如何避免無線通信時的同頻干擾?
文章出處:【微信號:ZLG_zhiyuan,微信公眾號:ZLG致遠電子】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論