吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

學習KNN算法的基本原理,并用Python實現該算法以及闡述其應用價值

lviY_AI_shequ ? 2018-01-02 14:56 ? 次閱讀

作為『十大機器學習算法』之一的K-近鄰(K-Nearest Neighbors)算法是思想簡單、易于理解的一種分類和回歸算法。今天,我們來一起學習KNN算法的基本原理,并用Python實現該算法,最后,通過一個案例闡述其應用價值。

KNN算法的直觀理解

(添加一個直觀的圖)

它基于這樣的簡單假設:彼此靠近的點更有可能屬于同一個類別。用大俗話來說就是『臭味相投』,或者說『近朱者赤,近墨者黑』。

它并未試圖建立一個顯示的預測模型,而是直接通過預測點的臨近訓練集點來確定其所屬類別。

K近鄰算法的實現主要基于三大基本要素:

K的選擇;

距離度量方法的確定;

分類決策規則。

下面,即圍繞這三大基本要素,探究它的分類實現原理。

KNN算法的原理

算法步驟

K近鄰算法的實施步驟如下:

根據給定的距離度量,在訓練集TT中尋找出與xx最近鄰的kk個點,涵蓋這kk個點的xx的鄰域記作Nk(x)Nk(x);

在Nk(x)Nk(x)中根據分類決策規則決定樣本的所屬類別yy:

y=argmaxcj∑xi∈Nk(x)I(yi=cj),i=1,2,?,N;j=1,2,?,K.y=argmaxcj∑xi∈Nk(x)I(yi=cj),i=1,2,?,N;j=1,2,?,K.

K的選擇

K近鄰算法對K的選擇非常敏感。K值越小意味著模型復雜度越高,從而容易產生過擬合;K值越大則意味著整體的模型變得簡單,學習的近似近似誤差會增大。

在實際的應用中,一般采用一個比較小的K值。并采用交叉驗證的方法,選取一個最優的K值。

距離度量

距離度量一般采用歐式距離。也可以根據需要采用LpLp距離或明氏距離。

分類決策規則

K近鄰算法中的分類決策多采用多數表決的方法進行。它等價于尋求經驗風險最小化。

但這個規則存在一個潛在的問題:有可能多個類別的投票數同為最高。這個時候,究竟應該判為哪一個類別?

可以通過以下幾個途徑解決該問題:

從投票數相同的最高類別中隨機地選擇一個;

通過距離來進一步給票數加權;

減少K的個數,直到找到一個唯一的最高票數標簽。

KNN算法的優缺點

優點

精度高

對異常值不敏感

沒有對數據的分布假設

缺點

計算復雜度高

在高維情況下,會遇到『維數詛咒』的問題

KNN算法的算法實現

import os os.chdir('D:\\my_python_workfile\\Project\\Writting')os.getcwd()'D:\\my_python_workfile\\Project\\Writting'from __future__ import divisionfrom collections import Counter#from linear_algebra import distance#from statistics import meanimport math, randomimport matplotlib.pyplot as plt# 定義投票函數defraw_majority_vote(labels): votes = Counter(labels) winner,_ = votes.most_common(1)[0] return winner

以上的投票函數存在潛在的問題:有可能多個類別的投票數同為最高。

下面的函數則實現了解決方案中的第三種分類決策方法。

# defmajority_vote(labels): """assumes that labels are ordered from nearest to farthest """ vote_counts = Counter(labels) winner,winner_count = vote_counts.most_common(1)[0] num_winners = len([count for count in vote_counts.values() if count == winner_count]) if num_winners == 1: return winner else: return majority_vote(labels[:-1]) # try again wthout the farthest# define distance functionimport math#### 減法定義defvector_substract(v,w): """substracts coresponding elements""" return [v_i - w_i for v_i,w_i in zip(v,w)]defsquared_distance(v,w): """""" return sum_of_squares(vector_substract(v,w))defdistance(v,w): return math.sqrt(squared_distance(v,w))########################################### define sum_of_squares### 向量的點乘defdot(v,w): return sum(v_i * w_i for v_i,w_i in zip(v,w))### 向量的平房和defsum_of_squares(v): """v_1*v_1+v_2*v_2+...+v_n*v_n""" return dot(v,v)# classifierdefknn_classify(k,labeled_points,new_point): """each labeled point should be a pair (point,label)""" # order the labeled points from nearest to farthest by_distance = sorted(labeled_points, key = lambda (point,_):distance(point,new_point)) # find the labels for the k cloest k_nearest_labels = [label for _,label in by_distance[:k]] # and let them vote return majority_vote(k_nearest_labels)KNN算法的應用:案例分析# cities = [(-86.75,33.5666666666667,'Python'),(-88.25,30.6833333333333,'Python'),(-112.016666666667,33.4333333333333,'Java'), (-110.933333333333,32.1166666666667,'Java'),(-92.2333333333333,34.7333333333333,'R'),(-121.95,37.7,'R'), (-118.15,33.8166666666667,'Python'), (-118.233333333333,34.05,'Java'),(-122.316666666667,37.8166666666667,'R'), (-117.6,34.05,'Python'),(-116.533333333333,33.8166666666667,'Python'), (-121.5,38.5166666666667,'R'),(-117.166666666667,32.7333333333333,'R'),(-122.383333333333,37.6166666666667,'R'), (-121.933333333333,37.3666666666667,'R'),(-122.016666666667,36.9833333333333,'Python'), (-104.716666666667,38.8166666666667,'Python'),(-104.866666666667,39.75,'Python'),(-72.65,41.7333333333333,'R'), (-75.6,39.6666666666667,'Python'),(-77.0333333333333,38.85,'Python'),(-80.2666666666667,25.8,'Java'), (-81.3833333333333,28.55,'Java'),(-82.5333333333333,27.9666666666667,'Java'),(-84.4333333333333,33.65,'Python'), (-116.216666666667,43.5666666666667,'Python'),(-87.75,41.7833333333333,'Java'),(-86.2833333333333,39.7333333333333,'Java'), (-93.65,41.5333333333333,'Java'),(-97.4166666666667,37.65,'Java'),(-85.7333333333333,38.1833333333333,'Python'), (-90.25,29.9833333333333,'Java'),(-70.3166666666667,43.65,'R'),(-76.6666666666667,39.1833333333333,'R'), (-71.0333333333333,42.3666666666667,'R'),(-72.5333333333333,42.2,'R'),(-83.0166666666667,42.4166666666667,'Python'), (-84.6,42.7833333333333,'Python'),(-93.2166666666667,44.8833333333333,'Python'),(-90.0833333333333,32.3166666666667,'Java'), (-94.5833333333333,39.1166666666667,'Java'),(-90.3833333333333,38.75,'Python'),(-108.533333333333,45.8,'Python'), (-115.166666666667,36.0833333333333,'Java'),(-71.4333333333333,42.9333333333333,'R'),(-74.1666666666667,40.7,'R'), (-106.616666666667,35.05,'Python'),(-78.7333333333333,42.9333333333333,'R'),(-73.9666666666667,40.7833333333333,'R'), (-80.9333333333333,35.2166666666667,'Python'),(-78.7833333333333,35.8666666666667,'Python'),(-100.75,46.7666666666667,'Java'), (-84.5166666666667,39.15,'Java'),(-81.85,41.4,'Java'),(-82.8833333333333,40,'Java'),(-97.6,35.4,'Python'), (-122.666666666667,45.5333333333333,'Python'),(-75.25,39.8833333333333,'Python'),(-80.2166666666667,40.5,'Python'), (-71.4333333333333,41.7333333333333,'R'),(-81.1166666666667,33.95,'R'),(-96.7333333333333,43.5666666666667,'Python'), (-90,35.05,'R'),(-86.6833333333333,36.1166666666667,'R'),(-97.7,30.3,'Python'),(-96.85,32.85,'Java'), (-98.4666666666667,29.5333333333333,'Java'),(-111.966666666667,40.7666666666667,'Python'),(-73.15,44.4666666666667,'R'), (-77.3333333333333,37.5,'Python'),(-122.3,47.5333333333333,'Python'),(-95.9,41.3,'Python'),(-95.35,29.9666666666667,'Java'), (-89.3333333333333,43.1333333333333,'R'),(-104.816666666667,41.15,'Java')]cities = [([longitude,latitude],language) for longitude,latitude,language in cities]# plot_state_bordersimport resegments = []points = []lat_long_regex = r""): for p1, p2 in zip(points, points[1:]): segments.append((p1, p2)) points = [] s = re.search(lat_long_regex, line) if s: lat, lon = s.groups() points.append((float(lon), float(lat)))defplot_state_borders(plt, color='0.8'): for (lon1, lat1), (lon2, lat2) in segments: plt.plot([lon1, lon2], [lat1, lat2], color=color)# key is language, value is pairplots = {"Java":([],[]),"Python":([],[]),"R":([],[])}#mark and colormarkers = {"Java":"o","Python":"s","R":"^"}colors = {"Java":"r","Python":"b","R":"g"}for (logitude,latitude),language in cities: plots[language][0].append(logitude) plots[language][1].append(latitude) # create a scatter series for each languagefor language,(x,y) in plots.iteritems(): plt.scatter(x,y,color = colors[language],marker = markers[language],label = language,zorder = 10) plot_state_borders(plt)plt.legend(loc = 0)plt.axis([-130,-60,20,55])plt.title("Favorite Programming Languages")plt.show()

學習KNN算法的基本原理,并用Python實現該算法以及闡述其應用價值

# try several different values for kfor k in [1,3,5,7]: num_correct = 0 for city in cities: location,actual_language = city other_cities = [other_city for other_city in cities if other_city != city] predicted_language = knn_classify(k,other_cities,location) if predicted_language == actual_language: num_correct += 1 print k,"neighbor[s]:",num_correct,"correct out of ",len(cities)1 neighbor[s]: 40 correct out of 753 neighbor[s]: 44 correct out of 755 neighbor[s]: 41 correct out of 757 neighbor[s]: 35 correct out of 75

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • python
    +關注

    關注

    56

    文章

    4807

    瀏覽量

    85037
  • KNN算法
    +關注

    關注

    0

    文章

    3

    瀏覽量

    6168

原文標題:K近鄰算法的Python實現

文章出處:【微信號:AI_shequ,微信公眾號:人工智能愛好者社區】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    蟻群算法基本原理及其應用實例

    與遺傳算法設計的結果進行了比較,數值仿真結果表明,蟻群算法具有一種新的模擬進化優化方法的有效性和應用價值。本文詳細介紹了蟻群算法基本原理及其
    發表于 02-02 09:44 ?9.3w次閱讀
    蟻群<b class='flag-5'>算法</b><b class='flag-5'>基本原理</b>及其應用實例

    FFT的基本原理算法結構

    FFT的基本原理算法結構FFT是利用了旋轉因子的周期性和對稱性,對DFT進行簡化的運算。各種FFT算法可分兩大類:一類是針對N等于2的整數次冪的算法,如基二
    發表于 06-14 00:20

    遺傳算法基本原理

    遺傳算法基本原理.zip
    發表于 01-07 12:13

    Python實現k-近鄰算法

    算法。5、測試算法:計算錯誤率。6、使用算法:首先需要輸入樣本數據和結構化的輸出結果,然后運行k-近鄰算法判定輸入數據分別屬于哪個分類,最后應用對計算出的分類執行后續的處理。關于k-近
    發表于 10-10 10:32

    KNN算法原理

    KNN(K近鄰算法
    發表于 11-01 09:14

    KNN分類算法python代碼實現

    kNN分類算法Python實現
    發表于 06-05 12:02

    視頻增強算法基本原理是什么?

    視頻增強算法基本原理是什么?單尺度算法的原理是什么?視頻增強能解決的實際問題及應用領域
    發表于 06-03 07:14

    PID算法基本原理及其執行流程

    景。1、PID算法基本原理PID算法是控制行業最經典、最簡單、而又最能體現反饋控制思想的算法。對于一般的研發人員來說,設計和實現PID
    發表于 12-21 08:22

    Python實現k-近鄰算法

    算法。5、測試算法:計算錯誤率。6、使用算法:首先需要輸入樣本數據和結構化的輸出結果,然后運行k-近鄰算法判定輸入數據分別屬于哪個分類,最后應用對計算出的分類執行后續的處理。關于k-近
    發表于 01-04 14:03

    利用KNN算法實現基于系統調用的入侵檢測技術

    該算法來自一種文本分類算法-KNN 算法,文中給出了用該算法實現的入侵檢測系統模型.利用
    發表于 06-13 11:01 ?18次下載

    LSB算法基本原理

    LSB算法基本原理LSB算法基本原理是:對空域的LSB做替換,用來替換LSB的序列就是需要加入的水印信息、水印的數字摘要或者由水印生成的偽隨機序列。由于水
    發表于 12-09 02:41 ?7581次閱讀

    關聯規則挖掘——Apriori算法基本原理以及改進

    本文詳細介紹了關于關聯規則挖掘——Apriori算法基本原理以及改進。
    發表于 02-02 16:46 ?9450次閱讀
    關聯規則挖掘——Apriori<b class='flag-5'>算法</b>的<b class='flag-5'>基本原理</b><b class='flag-5'>以及</b>改進

    蟻群算法基本原理及其改進算法.ppt

    蟻群算法基本原理及其改進算法.ppt
    發表于 04-23 14:28 ?6次下載
    蟻群<b class='flag-5'>算法</b>的<b class='flag-5'>基本原理</b>及其改進<b class='flag-5'>算法</b>.ppt

    人工智能機器學習之K近鄰算法KNN

    K近鄰KNN(k-Nearest Neighbor)算法,也叫K最近鄰算法,1968年由 Cover 和 Hart 提出,是機器學習算法中比
    發表于 05-29 06:53 ?2917次閱讀

    詳解機器學習分類算法KNN

    本文主要介紹一個被廣泛使用的機器學習分類算法,K-nearest neighbors(KNN),中文叫K近鄰算法
    的頭像 發表于 10-31 17:18 ?6200次閱讀
    百家乐入庄闲概率| 现场百家乐官网电话投注| 大发888官方游戏平台| 二八杠算法| 百家乐是娱乐场| 长春百家乐的玩法技巧和规则 | 沙龙百家乐官网娱乐| 百家乐官网制胜秘| 百家乐官网任你博娱乐网| 现场百家乐官网的玩法技巧和规则 | 百家乐官网gamble| 百家乐官网翻牌规则| 24山阴宅评凶吉| 信誉百家乐平台| 百家乐官网陷阱| 九州百家乐官网的玩法技巧和规则 | 澳门百家乐大家乐眼| 百家乐算牌方| 大发888娱乐城动态| 赛马会娱乐城| 百家乐官网代理博彩正网| 评测百家乐官网博彩网站| 红桃K百家乐官网的玩法技巧和规则 | 洛克百家乐的玩法技巧和规则| 大发888易付168| 百家乐网| 百家乐官网电话投注多少| 有钱人百家乐官网的玩法技巧和规则 | 百家乐官网赌场走势图| 什么风水适合做生意| 百家乐发牌盒子| 大发888在线娱乐城合作伙伴 | 金殿百家乐官网的玩法技巧和规则| 百家乐官网代理打| 百家乐模拟分析程序| 大发888怎么刷钱| 兴义市| 女优百家乐官网的玩法技巧和规则| 百家乐投注平台导航网| 网上百家乐群的微博| 皇冠足球投|