本文簡單介紹ACMMM2023錄用的論文“Relational Contrastive Learning for Scene Text Recognition”的主要工作。該論文主要研究了基于對比學習的文本識別自監(jiān)督方法。文章受到基于上下文感知方法在文字監(jiān)督學習中取得的巨大成功[1],利用文本和背景的異質(zhì)性,將文字的上下文信息理解為文本基元的關系,為表征學習提供有效的自監(jiān)督標簽。但是由于詞匯依賴[2],文本關系被限制在有限的數(shù)據(jù)集中,這可能導致過擬合并損害表征的魯棒性。因此,該文提出通過重排、分層和交互來豐富文本關系,并設計了一個統(tǒng)一的框架RCLSTR: Relational Contrastive Learning for Scene Text Recognition。實驗表明,該方法能夠有效提升對比學習文本識別的自監(jiān)督性能。
一、背景介紹
場景文本圖像的特點與自然圖像有很大的不同。首先,前景(文本)和背景是異構的,文本識別主要依賴于文本而不是背景。第二,大部分文本圖像通常具有從左到右的結構。第三,文本圖像包含了字符序列和多粒度的結構。先前的文本自監(jiān)督方法主要是從自然圖像遷移而來的,僅僅探索了文本的部分特點。該文章啟發(fā)于上下文感知方法在文字監(jiān)督學習中的成功應用,在自監(jiān)督對比學習中充分探索文本的特點。提出通過重排、分層和交互來豐富文本關系,從而形成更完整的對比學習機制。
如上圖所示,首先,對于“重排”,文本圖像可以被分割并重新排列成新的上下文關系,該文設計了一個重排模塊來生成新的單詞圖像,豐富了文本關系的多樣性。第二,對于“分層”,由于文本圖像中存在詞、子詞、字符等多個不同粒度的對象,提出了一種分層結構在多個層級上進行表征學習,從而豐富語義信息,增強表征的魯棒性。第三,對于“交互”,利用不同層級對象之間的交互,例如字符-子詞和子詞-詞相似度,約束不同層級上語義相似性的一致性,從而促進學習高質(zhì)量的表征。
二、方法介紹
基于MoCo[3]的框架,該文提出了用于文本識別的關系對比學習框架(RCLSTR)。如下圖所示:1、在Online分支(上半部分)中引入了一個新的重排階段,從原始分支中產(chǎn)生水平重排的圖像,稱為關系正則化模塊(Relational Regularization)。2、文章設計了一個分層結構來學習每一層內(nèi)部的關系,稱為分層關系模塊(Hierarchical Relation)。3、提出了一個跨層次關系一致性模塊(Cross-Hierarchy Relational Consistency),以便網(wǎng)絡學習層級之間的關系。
對于Relational Regularization,該文提出了一個重排模塊來生成新的文本圖像,生成的圖像包含更多的上下文關系。如下圖所示,該模塊將文本圖像水平劃分為幾個片段,然后隨機打亂,重新連接片段后生成重排后的圖像。重排后的圖像經(jīng)過Online編碼器和投影層后得到對應特征,然后將特征復位到原始圖片中的位置。
文章分別計算了原始特征和正則化特征(對應于重新排列的圖像)上的對比損失,然后將兩者求和得到:
對于Hierarchical Relation,考慮到文本在水平方向上具有不同的粒度,該文提出了一種分層的對比學習結構,通過不同粒度的池化層將特征映射到幀、子詞和詞三個層次,然后進行分層級的關系對比學習,每個層級計算對比損失(上標指代幀、子詞和詞三個層級),并求和得到:
對于Cross-Hierarchy Relational Consistency,提出一致性約束來學習相鄰層之間的關系,實現(xiàn)幀-子詞和子詞-詞之間的一致性約束。對于幀-子詞關系,由于來自相同空間位置(在同一圖像中)的幀和子詞特征在特征空間中表現(xiàn)出更高的相似性,因此將其視為正樣本對,將其他位置的特征視為負樣本對,子詞-詞之間的正負對關系類似。該模塊通過KL損失來約束相似度分布之間的一致性:
其中表示幀-子詞一致性損失,表示子詞-詞一致性損失。最后總的損失函數(shù)為正則化的多層級損失和跨層級損失求和:
三、實驗結果
表征質(zhì)量的結果如下表所示,與SeqMoCo的baseline相比,加入三個主要模塊后,基于CTC的解碼器性能平均提高了+12.38%,基于注意力的解碼器平均提高了+10.15%。同時,該表也展示了三個關鍵模塊各自的有效性。
下圖是使用t-SNE[4]將IIIT5K[5]數(shù)據(jù)集圖像特征可視化的結果,對應于SeqMoCo(Baseline)和該文的方法RCLSTR。可以看出,RCLSTR方法能更好地挖掘字符關系,對應相同類別的字符特征能夠更好地成簇。
四、總結
該工作提出了一個新的場景文本識別的關系對比學習框架(RCLSTR)。在這個框架中,通過三個模塊對文本圖像之間的關系進行了充分的探討。提出了Relational Regularization模塊,以豐富圖像內(nèi)部和圖像間的上下文關系。同時設計了用于關系對比學習的Hierarchical Relation模塊,在不同粒度上進行分層級對比學習。此外,針對場景文本圖像中不同層次的交互,設計了Cross-Hierarchy Relational Consistency模塊。實驗結果表明該方法能夠有效提升對比學習文本識別的自監(jiān)督性能。
-
解碼器
+關注
關注
9文章
1148瀏覽量
40938 -
模塊
+關注
關注
7文章
2735瀏覽量
47755 -
數(shù)據(jù)集
+關注
關注
4文章
1209瀏覽量
24835
原文標題:ACM MM 2023 | 上交提出RCLSTR:面向場景文本識別的關系對比學習
文章出處:【微信號:CVer,微信公眾號:CVer】歡迎添加關注!文章轉載請注明出處。
發(fā)布評論請先 登錄
相關推薦
評論