吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

傅里葉變換的實現方法

工程師鄧生 ? 來源:未知 ? 作者:劉芹 ? 2023-09-07 16:47 ? 次閱讀

傅里葉變換的實現方法

傅里葉變換是一種將信號在時間域和頻率域之間相互轉換的數學工具。它的實現方法有很多種,其中最常見的是離散傅里葉變換(DFT)和快速傅里葉變換(FFT)。

離散傅里葉變換是一種將離散信號從時域轉換到頻域的數學算法。其原理是將信號分解成一系列正弦和余弦函數的復合,每個正弦和余弦函數的頻率都與信號的周期相對應。DFT可以被看作是一個矩陣乘法,它通過將信號變換為一個由復數構成的向量,從而迅速地計算出信號的頻率分量。DFT的方程式如下:

X_k = \sum_{n=0}^{N-1} x_n e^{-i2\pi kn/N}

其中,x_n 是離散時域信號,X_k 是該信號在頻域上的頻率分量。e^{-i2\pi kn/N} 是一個旋轉因子,用于計算不同頻率分量的相對振幅和相位。

由于計算復雜度較高,當時傅里葉變換的實際應用范圍受到了限制。但是,1965年,J.W. Cooley和J.W. Tukey發明了一種名為快速傅里葉變換(FFT)的新的算法,使得DFT的計算復雜度可以從O(n^2)降為O(n log n)。FFT已成為傅里葉分析的標準工具之一,尤其是在數字信號處理領域。

FFT算法的實現方法有很多種,其中最常見的是蝴蝶算法和分治算法。蝴蝶算法的原理是將DFT問題遞歸地分解成兩個較小的DFT子問題,并在遞歸過程中將它們合并。在實現中,我們可以使用位逆序(bit-reversal)來對時域樣本進行重新排列,從而減少計算過程中的內存訪問次數。分治算法則將DFT問題分解成若干個較小的DFT子問題,并使用分治策略遞歸求解。

除了DFT和FFT之外,還有其他一些傅里葉變換算法,如非均勻快速傅里葉變換(NUFFT)、快速哈達瑪變換(FHT)等,它們通過不同的方式實現傅里葉變換的計算,具有更高的計算效率和更好的性能。

綜上所述,傅里葉變換是一種重要的信號處理工具,它在很多領域都得到了廣泛的應用。不同的實現方法可以根據具體的應用需求選擇合適的算法,從而提高計算效率和準確度。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • FFT
    FFT
    +關注

    關注

    15

    文章

    437

    瀏覽量

    59563
  • DFT
    DFT
    +關注

    關注

    2

    文章

    231

    瀏覽量

    22841
  • 傅里葉變換
    +關注

    關注

    6

    文章

    442

    瀏覽量

    42711
收藏 人收藏

    評論

    相關推薦

    常見傅里葉變換錯誤及解決方法

    傅里葉變換是一種數學工具,用于將信號從時域轉換到頻域,以便分析其頻率成分。在使用傅里葉變換時,可能會遇到一些常見的錯誤。 1. 采樣定理錯誤 錯誤描述: 在進行傅里葉變換之前,沒有正確地采樣信號
    的頭像 發表于 11-14 09:42 ?1169次閱讀

    傅里葉變換的基本性質和定理

    傅里葉變換是信號處理和分析中的一項基本工具,它能夠將一個信號從時間域(或空間域)轉換到頻率域。以下是傅里葉變換的基本性質和定理: 一、基本性質 線性性質 : 傅里葉變換是線性的,即對于信號的線性組合
    的頭像 發表于 11-14 09:39 ?1278次閱讀

    經典傅里葉變換與快速傅里葉變換的區別

    )或者它們的積分的線性組合的方法。 在數學上,它描述了時間域(或空間域)信號與頻率域信號之間的轉換關系。 快速傅里葉變換(FFT) : 是利用計算機計算離散傅里葉變換(DFT)的高效、快速計算
    的頭像 發表于 11-14 09:37 ?524次閱讀

    如何實現離散傅里葉變換

    離散傅里葉變換(DFT)是將離散時序信號從時間域變換到頻率域的數學工具,其實現方法有多種,以下介紹幾種常見的實現方案: 一、直接計算法 直接
    的頭像 發表于 11-14 09:35 ?514次閱讀

    傅里葉變換與卷積定理的關系

    傅里葉變換與卷積定理之間存在著密切的關系,這種關系在信號處理、圖像處理等領域中具有重要的應用價值。 一、傅里葉變換與卷積的基本概念 傅里葉變換 : 是一種將時間域(或空間域)信號轉換為頻率域信號
    的頭像 發表于 11-14 09:33 ?910次閱讀

    傅里葉變換與圖像處理技術的區別

    )轉換到頻域的數學工具。它基于傅里葉級數的概念,即任何周期函數都可以表示為不同頻率的正弦波和余弦波的疊加。對于非周期信號,傅里葉變換提供了一種將信號分解為不同頻率成分的方法。 在圖像處理中,傅里葉變換可以將圖
    的頭像 發表于 11-14 09:30 ?438次閱讀

    傅里葉變換在信號處理中的應用

    的數學方法。它基于傅里葉級數的概念,即任何周期函數都可以表示為正弦和余弦函數的和。對于非周期信號,傅里葉變換提供了一種將信號分解為不同頻率成分的方法。 應用1:頻譜分析 頻譜分析是傅里葉變換
    的頭像 發表于 11-14 09:29 ?2044次閱讀

    傅里葉變換的數學原理

    傅里葉變換的數學原理主要基于一種將函數分解為正弦和余弦函數(或復指數函數)的線性組合的思想。以下是對傅里葉變換數學原理的介紹: 一、基本原理 傅里葉級數 :對于周期性連續信號,可以將其表示為傅里葉
    的頭像 發表于 11-14 09:27 ?800次閱讀

    在TMS320C62x上實現的擴展精度基數-4快速傅里葉變換

    電子發燒友網站提供《在TMS320C62x上實現的擴展精度基數-4快速傅里葉變換.pdf》資料免費下載
    發表于 10-28 10:03 ?0次下載
    在TMS320C62x上<b class='flag-5'>實現</b>的擴展精度基數-4快速<b class='flag-5'>傅里葉變換</b>

    數字信號處理三大變換關系包括什么

    數字信號處理是電子工程和信息科學領域的一個重要分支,它涉及到對信號進行分析、處理和轉換的方法。數字信號處理的三大變換關系是傅里葉變換、拉普拉斯變換和Z
    的頭像 發表于 08-09 09:33 ?1363次閱讀

    請問快速傅里葉變換dsp庫在那里下載?

    快速傅里葉變換dsp庫在那里下載
    發表于 04-02 08:18

    如何用STM32F103做傅里葉變換

    Hi,想問下,用STM32F103做傅里葉變換,請問例程在那里下載?
    發表于 03-27 07:52

    傅里葉變換基本原理及在機器學習應用

    連續傅里葉變換(CFT)和離散傅里葉變換(DFT)是兩個常見的變體。CFT用于連續信號,而DFT應用于離散信號,使其與數字數據和機器學習任務更加相關。
    發表于 03-20 11:15 ?1067次閱讀
    <b class='flag-5'>傅里葉變換</b>基本原理及在機器學習應用

    一文道破傅里葉變換的本質,優缺點一目了然

    的缺點,就是不能實現時頻聯合分析。傅里葉變換要從負無窮計算到正無窮,這在實際使用當中,跟即時性分析會有很大的矛盾。根據這一缺點,提出了短時傅里葉變換。后來的時間—頻率分析也是以短時傅里葉變換
    發表于 03-12 16:06

    傅里葉變換和拉普拉斯變換的關系是什么

    傅里葉變換和拉普拉斯變換是兩種重要的數學工具,常用于信號分析和系統理論領域。雖然它們在數學定義和應用上有所差異,但它們之間存在緊密的聯系和相互依存的關系。 首先,我們先介紹一下傅里葉變換和拉普拉斯
    的頭像 發表于 02-18 15:45 ?1906次閱讀
    做生意的摆件| 百家乐官网平台有什么优势| 真钱现金斗地主| 六合彩大全| 优博注册| 真人百家乐官网技巧| 3U百家乐官网游戏| 百家乐官网走势图研究| 澳门百家乐官网几副牌| 网络百家乐官网金海岸破解软件| 百家乐官网秘| 伟易博百家乐官网娱乐城 | 百家乐官网手论坛48491| 百家乐视频游365| 奔驰百家乐游戏电玩| 最好的百家乐博彩公司| 成人百家乐的玩法技巧和规则| 威尼斯人娱乐城网址是什么 | 网上百家乐官网网站导航| 单机百家乐官网在线小游戏| 百家乐官网java| 百家乐视频交流| 澳门百家乐赌场娱乐网规则| 大发888手机游戏| 龙海市| 百家乐官网游戏解密| 百家乐官网怎样玩的| 百家乐真钱游戏下载| 威尼斯人娱乐官方网站| 澳门百家乐| 任我赢百家乐官网自动投注系统| 百家乐官网在线娱乐可信吗| 百家乐真钱棋牌| 希尔顿百家乐娱乐城| 神木县| 百家乐官网b28博你| 太阳城百家乐官网客户端| 太阳百家乐官网代理| 百家乐平玩法官方网址| 柏乡县| 风水24龙|