吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習聚類的綜述

穎脈Imgtec ? 2023-01-13 11:11 ? 次閱讀

作者:凱魯嘎吉

來源:博客園


這篇文章對現(xiàn)有的深度聚類算法進行全面綜述與總結。現(xiàn)有的深度聚類算法大都由聚類損失與網絡損失兩部分構成,博客從兩個視角總結現(xiàn)有的深度聚類算法,即聚類模型與神經網絡模型。

1. 什么是深度聚類?

經典聚類即數據通過各種表示學習技術以矢量化形式表示為特征。隨著數據變得越來越復雜和復雜,淺層(傳統(tǒng))聚類方法已經無法處理高維數據類型。為了解決該問題,深度聚類的概念被提出,即聯(lián)合優(yōu)化表示學習和聚類。a93d5d88-9194-11ed-ad0d-dac502259ad0.png

2. 從兩個視角看深度聚類

a94bb7f2-9194-11ed-ad0d-dac502259ad0.png

3. 從聚類模型看深度聚類

3.1 基于K-means的深度聚類

a95cb32c-9194-11ed-ad0d-dac502259ad0.png參考:聚類——K-means - 凱魯嘎吉 - 博客園

3.2 基于譜聚類的深度聚類

a975ad32-9194-11ed-ad0d-dac502259ad0.png參考:多視圖子空間聚類/表示學習(Multi-view Subspace Clustering/Representation Learning),關于“On the eigenvectors of p-Laplacian”目標函數的優(yōu)化問題- 凱魯嘎吉 - 博客園

3.3基于子空間聚類(Subspace Clustering, SC)的深度聚類

a9cad28a-9194-11ed-ad0d-dac502259ad0.png

參考:深度多視圖子空間聚類,多視圖子空間聚類/表示學習(Multi-view Subspace Clustering/Representation Learning),字典更新與 K-SVD - 凱魯嘎吉 - 博客園

3.4基于高斯混合模型(Gaussian Mixture Model, GMM)的深度聚類

a9dfb4ac-9194-11ed-ad0d-dac502259ad0.png

參考:聚類——GMM,基于圖嵌入的高斯混合變分自編碼器的深度聚類(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)- 凱魯嘎吉 - 博客園

3.5基于互信息的深度聚類

a9f06a86-9194-11ed-ad0d-dac502259ad0.png

參考:COMPLETER: 基于對比預測的缺失視圖聚類方法,Meta-RL——Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices - 凱魯嘎吉 - 博客園

3.6 基于KL的深度聚類

aa0e7436-9194-11ed-ad0d-dac502259ad0.png

參考:Deep Clustering Algorithms ,關于“Unsupervised Deep Embedding for Clustering Analysis”的優(yōu)化問題,結構深層聚類網絡,具有協(xié)同訓練的深度嵌入多視圖聚類- 凱魯嘎吉 -博客園

4.從神經網絡模型看深度聚類

4.1基于自編碼器(AutoEncoder, AE)的深度聚類

aa1ee104-9194-11ed-ad0d-dac502259ad0.png參考:Deep Clustering Algorithms - 凱魯嘎吉 - 博客園 (DEC, IDEC, DFKM, DCEC)

4.2基于變分自編碼器(Variational AutoEncoder, VAE)的深度聚類

aa300f4c-9194-11ed-ad0d-dac502259ad0.png

參考:變分推斷與變分自編碼器,變分深度嵌入(Variational Deep Embedding, VaDE),基于圖嵌入的高斯混合變分自編碼器的深度聚類(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG),元學習——Meta-Amortized Variational Inference and Learning,RL——Deep Reinforcement Learning amidst Continual/Lifelong Structured Non-Stationarity - 凱魯嘎吉 - 博客園

4.3基于生成對抗網絡(Generative Adversarial Network, GAN)的深度聚類

aa4322f8-9194-11ed-ad0d-dac502259ad0.png參考:生成對抗網絡(GAN與W-GAN),ClusterGAN: 生成對抗網絡中的潛在空間聚類,雙層優(yōu)化問題:統(tǒng)一GAN,演員-評論員與元學習方法(Bilevel Optimization Problem unifies GAN, Actor-Critic, and Meta-Learning Methods)- 凱魯嘎吉 - 博客園

4.4基于孿生網絡(Siamese Neural Network)/對比學習(Contrastive Learning)的深度聚類

aa5373c4-9194-11ed-ad0d-dac502259ad0.png參考:從對比學習(Contrastive Learning)到對比聚類(Contrastive Clustering),COMPLETER: 基于對比預測的缺失視圖聚類方法- 凱魯嘎吉 - 博客園

4.5基于圖神經網絡(Graph Neural Network)的深度聚類

aa62cc0c-9194-11ed-ad0d-dac502259ad0.png

參考:結構深層聚類網絡 - 凱魯嘎吉 -博客園

參考文獻

[1]第40期:基于深度神經網絡的聚類算法——郭西風

[2]物以類聚人以群分:聚類分析的一些挑戰(zhàn)和進展-凱魯嘎吉-博客園

[3] A Survey of Deep Clustering Algorithms -凱魯嘎吉-博客園

[4] Deep Clustering | Deep Learning Notes

[5]郭西風.基于深度神經網絡的圖像聚類算法研究[D].國防科技大學,2020.

作者:凱魯嘎吉

出處:http://www.cnblogs.com/kailugaji/

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 深度學習
    +關注

    關注

    73

    文章

    5516

    瀏覽量

    121556
收藏 人收藏

    評論

    相關推薦

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發(fā)展,深度學習作為其核心驅動力之一,已經在眾多領域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發(fā)表于 11-14 15:17 ?895次閱讀

    Pytorch深度學習訓練的方法

    掌握這 17 種方法,用最省力的方式,加速你的 Pytorch 深度學習訓練。
    的頭像 發(fā)表于 10-28 14:05 ?276次閱讀
    Pytorch<b class='flag-5'>深度</b><b class='flag-5'>學習</b>訓練的方法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?511次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?1283次閱讀

    FPGA做深度學習能走多遠?

    ,共同進步。 歡迎加入FPGA技術微信交流群14群! 交流問題(一) Q:FPGA做深度學習能走多遠?現(xiàn)在用FPGA做深度學習加速成為一個熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發(fā)表于 09-27 20:53

    深度學習中的時間序列分類方法

    的發(fā)展,基于深度學習的TSC方法逐漸展現(xiàn)出其強大的自動特征提取和分類能力。本文將從多個角度對深度學習在時間序列分類中的應用進行綜述,探討常用
    的頭像 發(fā)表于 07-09 15:54 ?1170次閱讀

    深度學習中的無監(jiān)督學習方法綜述

    應用中往往難以實現(xiàn)。因此,無監(jiān)督學習深度學習中扮演著越來越重要的角色。本文旨在綜述深度學習中的
    的頭像 發(fā)表于 07-09 10:50 ?953次閱讀

    深度學習與nlp的區(qū)別在哪

    深度學習和自然語言處理(NLP)是計算機科學領域中兩個非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學習與NLP的區(qū)別。 深度
    的頭像 發(fā)表于 07-05 09:47 ?1065次閱讀

    基于深度學習的小目標檢測

    在計算機視覺領域,目標檢測一直是研究的熱點和難點之一。特別是在小目標檢測方面,由于小目標在圖像中所占比例小、特征不明顯,使得檢測難度顯著增加。隨著深度學習技術的快速發(fā)展,尤其是卷積神經網絡(CNN
    的頭像 發(fā)表于 07-04 17:25 ?1060次閱讀

    深度學習中的模型權重

    深度學習這一充滿無限可能性的領域中,模型權重(Weights)作為其核心組成部分,扮演著至關重要的角色。它們不僅是模型學習的基石,更是模型智能的源泉。本文將從模型權重的定義、作用、優(yōu)化、管理以及應用等多個方面,深入探討
    的頭像 發(fā)表于 07-04 11:49 ?2029次閱讀

    深度學習常用的Python庫

    深度學習作為人工智能的一個重要分支,通過模擬人類大腦中的神經網絡來解決復雜問題。Python作為一種流行的編程語言,憑借其簡潔的語法和豐富的庫支持,成為了深度學習研究和應用的首選工具。
    的頭像 發(fā)表于 07-03 16:04 ?728次閱讀

    深度學習與傳統(tǒng)機器學習的對比

    在人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器學習的范疇,但
    的頭像 發(fā)表于 07-01 11:40 ?1541次閱讀

    深度學習與度量學習融合的綜述

    如今,機器學習的應用廣泛,包括人臉識別、醫(yī)療診斷等,為復雜問題和大量數據提供解決方案。機器學習算法能基于數據產生成功的分類模型,但每個數據都有其問題,需定義區(qū)別特征進行正確分類。
    發(fā)表于 04-24 09:49 ?475次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>與度量<b class='flag-5'>學習</b>融合的<b class='flag-5'>綜述</b>

    深度解析深度學習下的語義SLAM

    隨著深度學習技術的興起,計算機視覺的許多傳統(tǒng)領域都取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法中引入深度學習技術,使得
    發(fā)表于 04-23 17:18 ?1381次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學習</b>下的語義SLAM

    為什么深度學習的效果更好?

    導讀深度學習是機器學習的一個子集,已成為人工智能領域的一項變革性技術,在從計算機視覺、自然語言處理到自動駕駛汽車等廣泛的應用中取得了顯著的成功。深度
    的頭像 發(fā)表于 03-09 08:26 ?689次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的效果更好?
    祁东县| 游戏机百家乐官网的技巧| 德州扑克入门| 百家乐长胜攻略| 百家乐的嬴钱法| 致胜百家乐官网的玩法技巧和规则| 百家乐官网太阳城 | 金牌百家乐官网的玩法技巧和规则| 百家乐官网博彩吧| 澳门百家乐赢钱技术| 百家乐与龙虎斗怎么玩| 电玩百家乐游戏机路单| 百家乐平一直压庄| 大发888娱乐城永乐厅| 大发888娱乐平台下注| 至尊娱乐城| 百家乐官网金币游戏| 澳门百家乐官网下注最低| 最好的百家乐官网博彩公司| 扑克王百家乐官网的玩法技巧和规则| 百家乐园千术大全| 百家乐号游戏机| 大发888真人真钱| G3娱乐城| 百家乐官网桌布专业| 网上百家乐官网作| 网上百家乐导航| 全讯网sp| 韶关市| 至尊百家乐官网娱乐场| 百家乐路单纸下载| 百家乐发牌| 足球博彩网| 百家乐官网水晶筹码| 御匾会百家乐官网娱乐城 | 大发888游戏充值| 百乐门娱乐城| 百家乐官网押注最高是多少| 澳门百家乐文章| 百家乐金海岸软件| 德州扑克大小|