吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

重新思考邊緣負載均衡

馬哥Linux運維 ? 來源:簡書-DeepNoMind ? 2023-06-05 14:48 ? 次閱讀

目標

Netflix的云網(wǎng)關(guān)團隊一直致力于幫助系統(tǒng)減少錯誤,獲得更高的可用性,并提高故障恢復(fù)能力。因為Netflix每秒有超過一百萬次請求,即使是很低的錯誤率也會影響到會員體驗,所以每一點提升都有幫助。

因此,我們向Zuul和其他團隊學習,改進負載均衡實現(xiàn),以進一步減少由服務(wù)器過載引起的錯誤。

背景

Zuul以前用基于輪詢的Ribbon負載均衡器[3],并基于某些過濾機制將連接失敗率高的服務(wù)器列入黑名單。

過去幾年里,我們做了一些改進和定制,比如向最近上線的服務(wù)器發(fā)送較少流量,以避免過載。這些改進已經(jīng)取得了顯著效果,但對于某些問題比較多的原始集群,還是會看到與負載相關(guān)的錯誤率遠高于預(yù)期。

如果集群中所有服務(wù)器都過載,那選擇哪一臺服務(wù)器幾乎沒有什么區(qū)別,不過現(xiàn)實中我們經(jīng)常看到只有某個服務(wù)器子集過載的情況。例如:

服務(wù)器冷啟動后(在紅黑部署和觸發(fā)自動伸縮期間)。

由于大量動態(tài)屬性/腳本/數(shù)據(jù)更新或大型GC事件,服務(wù)器暫時變慢/阻塞。

服務(wù)器硬件問題。經(jīng)常會看到某些服務(wù)器運行得總是比其他服務(wù)器慢,有可能是由于鄰居節(jié)點占用太多資源,也可能因為硬件不同。

指導(dǎo)原則

在開始一個項目時,需要記住一些原則,從而幫助指導(dǎo)在設(shè)計軟件時需要做出的大大小小的決定,這個項目基于的原則如下。

在現(xiàn)有負載均衡器框架的約束下工作

我們已經(jīng)將之前定制的負載均衡器集成到了Zuul代碼庫中,從而使得無法與Netflix的其他團隊共享這些定制。因此,我們決定這次基于約束條件并做出額外投資,從一開始就考慮復(fù)用,從而能夠直接在其他系統(tǒng)中使用,減少重新發(fā)明輪子的代價。

向他人學習

嘗試在他人的想法和實現(xiàn)基礎(chǔ)上構(gòu)建,例如之前在Netflix其他IPC棧中試用的"二選一(choice-of-2)"和"試用期(probation)"算法

避免分布式狀態(tài)

選擇本地決策,避免跨集群協(xié)調(diào)狀態(tài)的彈性問題、復(fù)雜性和滯后。

避免客戶端配置和手動調(diào)優(yōu)

多年來基于Zuul的操作經(jīng)驗表明,將服務(wù)配置的部分置于不屬于同一團隊的客戶服務(wù)中會導(dǎo)致問題。

一個問題是,客戶端配置往往與服務(wù)端不斷變化的現(xiàn)實不同步,或者在不同團隊擁有的服務(wù)之間引入耦合的變更管理。

例如,用于服務(wù)X的EC2實例類型升級,導(dǎo)致該集群所需節(jié)點減少。因此,現(xiàn)在服務(wù)Y中的"每臺主機最大連接數(shù)"客戶端配置應(yīng)該增加,以反映新增加的容量。應(yīng)該先對客戶端進行更改,還是先對服務(wù)端進行更改,還是同時對兩者進行更改?更有可能的是,完全忘了要改配置,從而導(dǎo)致更多問題。

盡可能不要配置靜態(tài)閾值,而是采用基于當前流量、性能和環(huán)境變化的自適應(yīng)機制。

當需要靜態(tài)閾值時,與其讓服務(wù)團隊將閾值配置協(xié)調(diào)到每個客戶端,不如讓服務(wù)在運行時進行通信,以避免跨團隊邊界推動更改的問題。

負載均衡方法

主要的想法是,雖然服務(wù)器延遲的最佳數(shù)據(jù)來源是客戶端視圖,但服務(wù)器利用率的最佳數(shù)據(jù)來源是服務(wù)器本身。結(jié)合這兩種數(shù)據(jù)源,可以得到最有效的負載均衡。

我們基于一組互補機制,其中大多數(shù)已經(jīng)被其他人開發(fā)和使用過,只是以前可能沒有以這種方式組合。

用于在服務(wù)器之間進行選擇的二選一算法(choice-of-2 algorithm)。

基于服務(wù)器利用率的負載均衡器視圖進行主負載均衡。

基于服務(wù)器利用率的服務(wù)器視圖進行二次均衡。

基于試用期和基于服務(wù)器世代的機制,避免新啟動的服務(wù)器過載。

隨著時間推移,收集的服務(wù)器統(tǒng)計數(shù)據(jù)衰減為零。

Join-the-Shortest-Queue和服務(wù)器報告利用率相結(jié)合

我們選擇支持常用的Join-the-shortest-queue(JSQ)算法,并將服務(wù)器報告的利用率作為第二算法,以嘗試結(jié)合兩者達到最佳效果。

JSQ的問題

Join-the-shortest-queue對于單個負載均衡器非常有效,但如果跨負載均衡器集群使用,則會出現(xiàn)嚴重問題。負載均衡器會傾向于在同一時間選擇相同的低利用率服務(wù)器,從而造成超載,然后轉(zhuǎn)移到下一個利用率最低的服務(wù)器并造成超載,以此類推……

通過結(jié)合使用JSQ和二選一算法,可以在很大程度上消除羊群問題,除了負載均衡器沒有完整的服務(wù)器使用信息之外,其他方面都很好。

JSQ通常僅從本地負載均衡器計算到服務(wù)器的正在使用的連接數(shù)量來實現(xiàn),但是當有10到100個負載均衡器節(jié)點時,本地視圖可能會產(chǎn)生誤導(dǎo)。

f1cfdb6e-025c-11ee-90ce-dac502259ad0.png

單個負載平衡器的觀點可能與實際情況大不相同

例如,在上圖中,負載均衡器A有一個到服務(wù)器X的請求和一個到服務(wù)器Z的請求,但沒有到服務(wù)器Y的請求。所以當它收到新請求時,基于本地數(shù)據(jù),選擇利用率最小的服務(wù)器,會選擇服務(wù)器Y,但這不是正確的選擇。服務(wù)器Y實際上負載最重,其他兩個負載均衡器目前都有請求發(fā)送到服務(wù)器Y上,但負載均衡器A沒有辦法知道。

這說明單個負載均衡器的觀點與實際情況完全不同。

在只依賴客戶端視圖時遇到的另一個問題是,對于大型集群(特別是與低流量相結(jié)合時),負載均衡器通常只有幾個活躍連接,和集群中的某個子集交互。因此,當它選擇哪個服務(wù)器負載最少時,通常只是在若干個它認為負載都是0的服務(wù)器之間進行選擇,而并沒有關(guān)于所選服務(wù)器的利用率的數(shù)據(jù),所以只能盲猜。

這個問題的解決方案是與所有其他負載均衡器共享所有活躍連接數(shù)狀態(tài)……但這樣就需要解決分布式狀態(tài)問題。

考慮到獲得的好處要大于付出的成本,因此我們通常只將分布式可變狀態(tài)作為最后手段:

分布式狀態(tài)增加了部署和金絲雀發(fā)布等任務(wù)的運維開銷和復(fù)雜性。

彈性風險與數(shù)據(jù)損壞的爆炸半徑相關(guān)(1%負載均衡器上數(shù)據(jù)損壞讓人煩惱,但100%負載均衡器上數(shù)據(jù)損壞會造成停機)。

在負載均衡器之間實現(xiàn)P2P分布式狀態(tài)系統(tǒng)的成本,或者運維一個具有處理大量讀寫流量所需的性能和彈性憑證的單一數(shù)據(jù)庫的成本。

另一種更簡單的解決方案(也是我們選擇的),是依賴于服務(wù)器向每個負載均衡器報告資源使用情況……

服務(wù)器報告使用率

服務(wù)器主動上報其使用率的好處是可以提供所有使用了該服務(wù)器的負載均衡器的完整信息,從而避免JSQ的不完整問題。

對此有兩種實現(xiàn)方式:

運行狀況檢查端點主動輪詢每個服務(wù)器的當前利用率。

被動跟蹤來自服務(wù)器的響應(yīng),并標注其當前利用率數(shù)據(jù)。

我們選擇第二種方式,其實現(xiàn)簡單,可以頻繁更新數(shù)據(jù),避免了N個負載均衡器每隔幾秒鐘輪詢M個服務(wù)器所帶來的額外開銷。

被動策略的影響是,負載均衡器向一臺服務(wù)器發(fā)送請求的頻率越高,獲得的該服務(wù)器的利用率數(shù)據(jù)就越新。因此RPS越高,負載均衡的有效性就越高。但反過來,RPS越低,負載均衡的效果就越差。

這對我們來說不是問題,但對于通過特定負載均衡器處理低RPS(同時通過另一個負載均衡器處理高RPS)的服務(wù)來說,主動輪詢運行狀況檢查可能更有效。臨界點是負載均衡器向每個服務(wù)器發(fā)送的RPS低于運行狀況檢查的輪詢頻率。

服務(wù)端實現(xiàn)

我們在服務(wù)端通過簡單跟蹤活躍請求計數(shù)來實現(xiàn),將其轉(zhuǎn)換為該服務(wù)器配置的最大百分比,并將其作為HTTP響應(yīng)報頭:

X-Netflix.server.utilization: [, target=]

服務(wù)器可以指定可選的目標利用率,從而標識預(yù)期在正常條件下運行的利用率百分比,負載均衡器基于這一數(shù)據(jù)進行粗粒度過濾,后面會詳細介紹。

我們嘗試使用活躍計數(shù)以外的指標,例如操作系統(tǒng)報告的cpu利用率和平均負載,但發(fā)現(xiàn)它們會引起振蕩,原因似乎是因為它們是基于滾動平均值計算的,因此有一定的延遲。所以我們決定現(xiàn)在只用相對簡單的實現(xiàn),即只計算活躍請求。

用二選一算法代替輪詢

由于我們希望能夠通過比較服務(wù)器的統(tǒng)計數(shù)據(jù)來選擇服務(wù)器,因此不得不拋棄現(xiàn)有的簡單輪詢實現(xiàn)。

我們在Ribbon算法中嘗試的一個替代方案是JSQ與ServerListSubsetFilter相結(jié)合,以減少分布式JSQ的羊群問題。這樣可以得到合理的結(jié)果,但是結(jié)果在目標服務(wù)器之間的請求分布仍然過于分散。

因此,我們參考了Netflix另一個團隊的早期經(jīng)驗,并實現(xiàn)了"二選一(Choice-of-2)"算法。這樣做的優(yōu)點是實現(xiàn)簡單,使負載均衡器的cpu成本較低,并能提供良好的請求分布。

根據(jù)綜合因素進行選擇

為了在服務(wù)器之間進行選擇,我們比較了3個不同的因素:

客戶端運行狀況: 該服務(wù)器連接相關(guān)錯誤的滾動百分比。

服務(wù)器利用率: 該服務(wù)器的最新利用率數(shù)據(jù)。

客戶端利用率: 從當前負載均衡器發(fā)送到該服務(wù)器的活躍請求數(shù)。

這3個因素被用來為每個服務(wù)器計算分數(shù),然后比較總分數(shù)選擇獲勝者。

像這樣使用多個因素確實會使實現(xiàn)更加復(fù)雜,但可以避免僅依賴一個因素可能出現(xiàn)的邊際問題。

例如,如果一臺服務(wù)器開始出現(xiàn)故障并拒絕所有請求,那么上報的利用率將會低得多(因為拒絕請求比接受請求開銷更小),如果這是唯一考慮的因素,那么所有負載均衡器將開始向那臺壞服務(wù)器發(fā)送更多請求。客戶端運行狀況因素緩解了這種情況。

過濾

當隨機選擇2臺服務(wù)器進行比較時,會過濾掉任何超過安全利用率配置和運行狀況閾值的服務(wù)器。

每個請求都會進行這種過濾,以避免定期過濾會出現(xiàn)的過時問題。為了避免在負載均衡器上造成較高的cpu負載,我們盡力而為(best-effort)嘗試N次來隨機選擇一個可用服務(wù)器,然后在必要時回退到未篩選的服務(wù)器。

當服務(wù)器池中有很大一部分存在長期問題時,這樣的篩選非常有用。在這種情況下,隨機選擇2個服務(wù)器通常會出現(xiàn)選擇了2個壞服務(wù)器進行比較的情況。

但缺點是這依賴于靜態(tài)配置閾值,而這是我們試圖避免的。測試結(jié)果讓我們相信這點依賴是值得的,即使只依賴一些通用(非特定于服務(wù)的)閾值。

試用期

對于任何沒有發(fā)送響應(yīng)給負載均衡器的服務(wù)器,一次只允許一個活躍請求,隨后會過濾掉這些試用服務(wù)器,直到收到來自它們的響應(yīng)。

這有助于避免新啟動的服務(wù)器還沒有機會顯示使用率數(shù)據(jù)之前就因大量請求而超載。

基于服務(wù)器世代的預(yù)熱

我們基于服務(wù)器世代在服務(wù)器啟動的前90秒內(nèi)逐步增加流量。

這是另一種有用的機制,就像試用期一樣,可以在微妙的發(fā)布后增加一些關(guān)于服務(wù)器過載的警告。

統(tǒng)計衰變

為確保服務(wù)器不會被永久列入黑名單,我們將衰減率應(yīng)用到所有用于負載均衡的統(tǒng)計數(shù)據(jù)上(目前是30秒的線性衰減)。例如,如果一個服務(wù)器的錯誤率上升到80%,停止向它發(fā)送流量,使用的數(shù)據(jù)將在30秒內(nèi)衰減為零,比方說15秒后是會是40%)。

運維影響

差距更大的請求分布

不用輪詢進行負載均衡的負面影響是,以前服務(wù)器之間的請求分布非常均衡,現(xiàn)在服務(wù)器之間的負載差距更大。

"二選一"算法在很大程度上能緩解這種情況(與跨集群中所有服務(wù)器或服務(wù)器子集的JSQ相比),但不可能完全避免。

因此,在運維方面確實需要考慮這一點,特別是在金絲雀分析中,我們通常比較請求計數(shù)、錯誤率、cpu等的絕對值。

越慢的服務(wù)器接收的流量越少

顯然這是預(yù)期效果,但對于習慣于輪詢的團隊來說,流量是平等分配的,這對運維方面會產(chǎn)生連鎖反應(yīng)。

由于跨原始服務(wù)器的流量分布現(xiàn)在依賴于它們的利用率,如果一些服務(wù)器正在運行效率更高或更低的不同構(gòu)建,那么將接收到更多或更少的流量。所以:

當集群采用紅黑部署時,如果新的服務(wù)器組性能下降,那么該組的流量比例將小于50%。

同樣的效果可以在金絲雀集群中看到,基線組可能會接收到與金絲雀組不同的流量。所以當我們著眼于指標時,最好著眼于RPS和CPU的組合(例如RPS在金絲雀中可能更低,而CPU相同)。

更低效的異常值檢測。我們通常會自動監(jiān)控集群中的異常服務(wù)器(通常是由于硬件問題導(dǎo)致啟動速度變慢的虛擬機)并終止它們,當由于負載均衡而接收較少流量時,這種檢測就更加困難。

滾動動態(tài)數(shù)據(jù)更新

從輪詢遷移到新的負載均衡器取得了很好的效果,可以很好的配合動態(tài)數(shù)據(jù)和屬性的分階段更新。

最佳實踐是每次在一個區(qū)域(數(shù)據(jù)中心)部署數(shù)據(jù)更新,以限制意外問題的爆發(fā)半徑。

即使數(shù)據(jù)更新本身沒有引起任何問題,服務(wù)器應(yīng)用更新的行為也會導(dǎo)致短暫的負載高峰(通常與GC相關(guān))。如果此峰值同時出現(xiàn)在集群中所有服務(wù)器上,則可能導(dǎo)致負載下降以及向上游傳播大量錯誤。在這種情況下,因為所有服務(wù)器的負載都很高,負載均衡器幾乎無法提供幫助。

然而,如果考慮與自適應(yīng)負載均衡器結(jié)合使用,一個解決方案是在集群服務(wù)器之間進行滾動數(shù)據(jù)更新。如果只有一小部分服務(wù)器同時應(yīng)用更新,那么只要還有足夠服務(wù)器能夠承載流量,負載均衡器就可以短暫減少到這些服務(wù)器的流量。

合成負載測試結(jié)果

在開發(fā)、測試和調(diào)優(yōu)負載均衡器時,我們廣泛使用了合成負載測試場景,這在使用真實集群和網(wǎng)絡(luò)驗證有效性時非常有用,可以作為單元測試之后的可重復(fù)步驟,但還沒有使用真實用戶流量。

測試的更多細節(jié)在后面的附錄中列出,現(xiàn)總結(jié)要點如下:

與輪詢實現(xiàn)相比,啟用了所有功能的新負載均衡器在負載下降和連接錯誤方面降低了幾個數(shù)量級。

平均和長尾延遲有了實質(zhì)性改善(與輪詢實現(xiàn)相比減少了3倍)。

服務(wù)器本身由于添加了特性,顯著增加了價值,減少了一個數(shù)量級的錯誤以及大部分延遲。

f1f5ca2c-025c-11ee-90ce-dac502259ad0.png

結(jié)果比較

對實際生產(chǎn)流量的影響

我們發(fā)現(xiàn),只要服務(wù)器能夠處理,新負載均衡器就能非常有效的將盡可能多的流量分配到每個服務(wù)器。這對于在間歇和持續(xù)降級的服務(wù)器之間進行路由具有很好的效果,無需任何人工干預(yù),從而避免工程師在半夜被叫醒處理重大生產(chǎn)問題。

很難說明在正常運行時的影響,但在生產(chǎn)事故中甚至在某些服務(wù)的正常穩(wěn)態(tài)運行中,可以看到對應(yīng)的影響。

事故發(fā)生時

最近的事故涉及到服務(wù)中的錯誤,該錯誤導(dǎo)致越來越多的服務(wù)器線程隨著時間的推移而阻塞。從服務(wù)器啟動的那一刻起,每小時都會阻塞幾個線程,直到最終達到最大負載并造成負載下降。

在下面的服務(wù)器RPS圖表中,可以看到在凌晨3點之前,服務(wù)器負載分布差距較大,這是由于負載均衡器向阻塞線程數(shù)量較多的服務(wù)器發(fā)送較少流量的緣故。然后,在凌晨3點25分之后,自動縮放啟動更多服務(wù)器,由于這些服務(wù)器還沒有任何線程阻塞,每個服務(wù)器收到的RPS大約是現(xiàn)有服務(wù)器的兩倍,可以成功處理更多流量。

f21a28b8-025c-11ee-90ce-dac502259ad0.png

每服務(wù)器RPS

現(xiàn)在,如果我們看一下同一時間范圍內(nèi)每臺服務(wù)器的錯誤率圖表,可以看到,在整個事故過程中,所有服務(wù)器的錯誤分布是相當均勻的,盡管某些服務(wù)器的容量比其他服務(wù)器小得多。這表明負載均衡器在有效工作,而由于集群整體可用容量太小,因此所有服務(wù)器都被推到稍稍超過其有效容量的位置。

然后,當自動縮放啟動新服務(wù)器時,新服務(wù)器處理了盡可能多的流量,以至于出現(xiàn)了與集群其他部分相同的錯誤。

f24fd9e0-025c-11ee-90ce-dac502259ad0.png

每服務(wù)器每秒錯誤

因此,綜上所述,負載均衡器在向服務(wù)器分配流量方面非常有效,但在這種情況下,沒有啟動足夠的新服務(wù)器,從而導(dǎo)致沒法將整體錯誤水平降至零。

穩(wěn)態(tài)

我們還看到,在某些服務(wù)中,由于GC事件而出現(xiàn)幾秒鐘的負載下降,因此穩(wěn)態(tài)噪聲顯著降低。從這里可以看出,啟用新的負載均衡器后,錯誤大幅減少:

f28818b4-025c-11ee-90ce-dac502259ad0.png

啟用新負載均衡器前后數(shù)周內(nèi)與負載相關(guān)的錯誤率

告警中的差距

一個意料之外的影響是突出了我們自動告警中的一些差距。一些基于服務(wù)錯誤率的現(xiàn)有告警,以前會在漸進式問題只影響到集群的一小部分時發(fā)出告警,現(xiàn)在因為錯誤率一直很低,告警會晚得多,或者根本不發(fā)出告警。這意味著,有時沒法將影響集群的大問題通知給團隊。解決方案是增加對利用率指標的偏差而不僅僅是錯誤指標的額外告警來彌補這些差距。

結(jié)論

本文并不是為Zuul做宣傳(盡管它是一個偉大的系統(tǒng)),只是為代理/服務(wù)網(wǎng)格/負載均衡社區(qū)分享和增加了一個有趣的方法。Zuul是測試、實施和改進這些類型負載均衡方案的偉大系統(tǒng),以Netflix的需求和規(guī)模來運行,使我們有能力證明和改進這些方法。

有許多不同方法可以改善負載均衡,而這個方法對我們來說效果很好,大大減少了與負載有關(guān)的錯誤率,并極大改善了真實流量的負載均衡。

然而,對于任何軟件系統(tǒng)來說,都應(yīng)該根據(jù)自己組織的限制和目標來做決定,并盡量避免追求完美。

附錄--合成負載測試的結(jié)果

測試場景

這個負載測試場景重現(xiàn)了這樣一種情況: 小型原始集群正在進行紅黑部署,而新部署的集群存在冷啟動問題或某種性能退化(通過人為在新部署的服務(wù)器上為每個請求注入額外延遲和cpu負載來模擬)。

該測試將4000 RPS發(fā)送到一個大型Zuul集群(200個節(jié)點),該集群反過來代理到一個小型Origin集群(20個實例),幾分鐘后,啟用第二個緩慢的Origin集群(另外20個實例)。

啟用所有功能

以下是啟用了所有功能的新負載均衡器的指標圖表。

f2bb6a66-025c-11ee-90ce-dac502259ad0.png

啟用新負載均衡器所有功能進行負載測試

作為參考,看看流量是如何在較快和較慢的服務(wù)器組之間分配的,可以看到,負載均衡器把發(fā)送到較慢組的比例減少到15%左右(預(yù)期50%)。

f2eb9452-025c-11ee-90ce-dac502259ad0.png

正常集群和慢速集群之間的流量分布

禁用服務(wù)器利用率

還是新負載均衡器,但禁用了服務(wù)器利用率功能,因此只有客戶端數(shù)據(jù)被用于均衡。

f30c7b68-025c-11ee-90ce-dac502259ad0.png

使用新負載均衡器進行負載測試,但禁用了服務(wù)器利用率特性

原始實現(xiàn)

這是最初的輪詢負載均衡器與服務(wù)器黑名單功能。

f3448198-025c-11ee-90ce-dac502259ad0.png

使用原始負載均衡器進行負載測試

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 均衡器
    +關(guān)注

    關(guān)注

    9

    文章

    219

    瀏覽量

    30418
  • 服務(wù)器
    +關(guān)注

    關(guān)注

    12

    文章

    9308

    瀏覽量

    86073
  • 負載均衡
    +關(guān)注

    關(guān)注

    0

    文章

    113

    瀏覽量

    12392
  • Netflix
    +關(guān)注

    關(guān)注

    0

    文章

    90

    瀏覽量

    11255

原文標題:重新思考邊緣負載均衡

文章出處:【微信號:magedu-Linux,微信公眾號:馬哥Linux運維】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    負載均衡(Load Balance)

    負載均衡(Load Balance)   &nbs
    發(fā)表于 01-08 14:39 ?860次閱讀

    什么是服務(wù)器網(wǎng)絡(luò)負載均衡

    什么是服務(wù)器網(wǎng)絡(luò)負載均衡 什么是負載均衡
    發(fā)表于 01-11 10:58 ?1810次閱讀

    負載均衡是什么意思?負載均衡器有什么用

    負載平衡也稱負載共享,是指對系統(tǒng)中的負載情況進行動態(tài)調(diào)整,以盡量消除或減少系統(tǒng)中各節(jié)點負載均衡的現(xiàn)象。
    發(fā)表于 12-21 09:48 ?1.9w次閱讀
    <b class='flag-5'>負載</b><b class='flag-5'>均衡</b>是什么意思?<b class='flag-5'>負載</b><b class='flag-5'>均衡</b>器有什么用

    負載均衡服務(wù)器有哪些

    負載均衡服務(wù)器是進行負載分配的服務(wù)器。通過負載均衡服務(wù)器,將服務(wù)請求均衡分配到實際執(zhí)行的服務(wù)中,
    發(fā)表于 12-21 10:02 ?1186次閱讀
    <b class='flag-5'>負載</b><b class='flag-5'>均衡</b>服務(wù)器有哪些

    基于C-V2X邊緣服務(wù)器的動態(tài)負載均衡算法及研究

    為更好地解決蜂窩車聯(lián)網(wǎng)與移動邊緣計算融合應(yīng)用場景下邊緣服務(wù)器資源負載分配不均、資源利用率較低等問題,提岀一種動態(tài)負載均衡算法。通過監(jiān)測
    發(fā)表于 03-15 17:17 ?16次下載
    基于C-V2X<b class='flag-5'>邊緣</b>服務(wù)器的動態(tài)<b class='flag-5'>負載</b><b class='flag-5'>均衡</b>算法及研究

    服務(wù)器負載均衡有幾種類型,做負載均衡好在哪

    對于服務(wù)器負載均衡可能很多朋友并不了解是什么,服務(wù)器負載均衡的簡單理解就是指對系統(tǒng)中的負載情況進行動態(tài)調(diào)整,以盡量消除或減少系統(tǒng)中各節(jié)點
    的頭像 發(fā)表于 09-02 17:57 ?3332次閱讀

    apache反向代理和負載均衡總結(jié)

    apache反向代理和負載均衡總結(jié)(5g電源技術(shù)要求)-apache反向代理和負載均衡總結(jié) ? ? ? ? ? ? ? ?
    發(fā)表于 08-31 12:27 ?0次下載
    apache反向代理和<b class='flag-5'>負載</b><b class='flag-5'>均衡</b>總結(jié)

    Apacheproxy負載均衡和Session復(fù)制

    Apacheproxy負載均衡和Session復(fù)制(電源技術(shù)交流群)-Apacheproxy負載均衡和Session復(fù)制? ? ? ? ? ? ? ? ? ??
    發(fā)表于 08-31 12:29 ?0次下載
    Apacheproxy<b class='flag-5'>負載</b><b class='flag-5'>均衡</b>和Session復(fù)制

    解密負載均衡技術(shù)和負載均衡算法

    負載均衡器是一種軟件或硬件設(shè)備,它起到了將網(wǎng)絡(luò)流量分散到一組服務(wù)器的作用,可以防止任何一臺服務(wù)器過載。負載均衡算法就是負載
    的頭像 發(fā)表于 11-12 09:16 ?1193次閱讀

    高性能負載均衡的分類和算法

    高性能集群之所以復(fù)雜,主要原因是增加了任務(wù)分配器,以及為任務(wù)選擇合適的分配算法。負載均衡器就是任務(wù)分配器,負載均衡這個名稱已經(jīng)成為事實標準,但負載
    的頭像 發(fā)表于 05-31 09:56 ?791次閱讀
    高性能<b class='flag-5'>負載</b><b class='flag-5'>均衡</b>的分類和算法

    負載均衡是如何工作的?

    負載均衡是在多個物理服務(wù)器之間智能分配流量以最大化資源利用率的過程。換句話說,在兩臺或多臺計算機/服務(wù)器之間共享計算工作負載的過程就是負載均衡
    的頭像 發(fā)表于 06-15 17:26 ?725次閱讀

    SDWAN和負載均衡的關(guān)系

    SDWAN和負載均衡的關(guān)系
    的頭像 發(fā)表于 07-21 14:28 ?618次閱讀

    常見的幾種負載均衡技術(shù)介紹

    在大力建設(shè)算力網(wǎng)絡(luò)的大背景下,隨著SDN思潮的深入推進、網(wǎng)絡(luò)集群的部署,負載均衡成為了一種不可或缺的技術(shù),它在云,網(wǎng),邊都起了至關(guān)重要的作用。本文會對常見的幾種負載均衡技術(shù)進行介紹,同
    的頭像 發(fā)表于 09-25 10:30 ?1785次閱讀
    常見的幾種<b class='flag-5'>負載</b><b class='flag-5'>均衡</b>技術(shù)介紹

    如何確定適合的負載均衡比例

    路由器的負載均衡是一種應(yīng)用于網(wǎng)絡(luò)中的技術(shù),它可以平衡網(wǎng)絡(luò)流量的分配,提高網(wǎng)絡(luò)的性能和穩(wěn)定性。在配置路由器的負載均衡時,選擇合適的負載
    的頭像 發(fā)表于 12-15 10:36 ?1719次閱讀

    nginx負載均衡配置介紹

    目錄 nginx負載均衡 nginx負載均衡介紹 反向代理與負載均衡 nginx
    的頭像 發(fā)表于 11-10 13:39 ?312次閱讀
    nginx<b class='flag-5'>負載</b><b class='flag-5'>均衡</b>配置介紹
    百家乐平台哪个有在线支付呢| 百家乐透视牌靴价格| 沙龙百家乐娱乐| 博雅德州扑克网页版| 百家乐官网的庄闲概率| 大佬百家乐官网的玩法技巧和规则| 立即博百家乐娱乐城| 德州扑克高级教程| 百家乐官网韩泰阁| 真人百家乐娱乐场| 大发888安装需要多久| 视频百家乐官网平台出租| 宾利百家乐游戏| 大发888游戏平台888| 百家乐官网打印程序| 百家乐不能视频| 大发888casino组件下载| 太阳城百家乐官网如何看路| 噢门百家乐注码技巧| k7娱乐城官网| 百家乐官网伴侣| 百家乐六手变化混合赢家打| 百家乐官网胜率在哪| 金锁玉关24山砂水断| 24山向名| bet365注册哪家好| 百家乐官网顶尖高手| 百家乐平注法到| 百家乐官网投注方式| 百家乐现金投注信誉平台| 百家乐平注常赢玩法| 24山方位| 百家乐网盛世三国| 乐百家百家乐官网游戏| 百家乐网站平台| 陇南市| 百家乐巴厘岛平台| 南通棋牌游戏中心下载| 澳门百家乐官网论坛及玩法| 六合彩开奖记录| 百家乐玩法窍门|