近年來,在CV領(lǐng)域,基于機器視覺技術(shù)的表面缺陷檢測技術(shù)開始大力發(fā)展,其逐漸取代人工檢測,大大提升了制造業(yè)的質(zhì)檢效率,有效控制產(chǎn)品質(zhì)量。
但由于缺陷多種多樣,傳統(tǒng)的機器視覺算法很難做到對缺陷特征完整的建模和遷移,所以越來越多的學(xué)者和工程人員開始將深度學(xué)習(xí)算法引入到缺陷檢測領(lǐng)域中。
所以,在目標(biāo)檢測領(lǐng)域,缺陷檢測面臨的挑戰(zhàn)受到社會非常多的關(guān)注,也是一個非常容易有創(chuàng)新點的方向!
審核編輯 :李倩
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。
舉報投訴
原文標(biāo)題:一文梳理缺陷檢測的深度學(xué)習(xí)和傳統(tǒng)方法
文章出處:【微信號:CVer,微信公眾號:CVer】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
相關(guān)推薦
,基于深度學(xué)習(xí)的缺陷檢測已經(jīng)應(yīng)用于金屬固件、布匹絲織物、建筑裂紋、鋼筋裂紋等多個領(lǐng)域,并取得了不錯的成果。下面將結(jié)合具體案例介紹其實現(xiàn)方法。
發(fā)表于 08-10 10:38
傳統(tǒng)視覺對于缺陷檢測有先天性的不足,當(dāng)缺陷區(qū)域與正常區(qū)域灰度接近,沒有明確的邊界曲線時,往往無法將缺陷檢
發(fā)表于 08-16 17:29
標(biāo)注產(chǎn)品后通過訓(xùn)練平臺完成模型訓(xùn)練經(jīng)過少量樣品訓(xùn)練得到測試結(jié)果,表明深度學(xué)習(xí)對傳統(tǒng)視覺算法比較棘手的缺陷檢測方面,能簡單粗暴的解決問題,后續(xù)
發(fā)表于 08-16 18:12
異常檢測的深度學(xué)習(xí)研究綜述原文:arXiv:1901.03407摘要異常檢測是一個重要的問題,在不同的研究領(lǐng)域和應(yīng)用領(lǐng)域都得到了很好的研究。
發(fā)表于 07-12 07:10
ABSTRACT1.基于深度學(xué)習(xí)的異常檢測的研究方法進行結(jié)構(gòu)化和全面的概述2.回顧這些方法在各個領(lǐng)域這個中的應(yīng)用情況,并評估他們的有效性。3
發(fā)表于 07-12 06:36
檢測,檢測準(zhǔn)確性和檢測穩(wěn)定性較差、容易誤判。 基于深度學(xué)習(xí)和3D圖像處理的精密加工件外觀缺陷
發(fā)表于 03-08 13:59
實際情況非常復(fù)雜,傳統(tǒng)的分類方法不堪重負(fù)。現(xiàn)在,我們不再試圖用代碼來描述每一個圖像類別,決定轉(zhuǎn)而使用機器學(xué)習(xí)的方法處理圖像分類問題。 目前,
發(fā)表于 09-28 19:43
?0次下載
近年來,無需人工干預(yù)的深度學(xué)習(xí)已經(jīng)成為缺陷圖像檢測與分類的一種主流方法。本文針對室內(nèi)墻壁缺
陷
發(fā)表于 04-24 09:44
?1次下載
基于深度學(xué)習(xí)的工業(yè)缺陷檢測方法可以降低傳統(tǒng)人工質(zhì)檢的成本, 提升
發(fā)表于 07-30 14:41
?2830次閱讀
深度學(xué)習(xí)主要包含卷積神經(jīng)網(wǎng)絡(luò)和Faster R-CNN兩種網(wǎng)絡(luò)模型,通過利用算法模型自動學(xué)習(xí)的特點,不再受限于復(fù)雜多變的環(huán)境,可自動提取缺陷特征,最終實現(xiàn)自動
發(fā)表于 10-19 15:08
?2753次閱讀
深度學(xué)習(xí)推動了數(shù)字圖像處理領(lǐng)域的極限。但是,這并不是說傳統(tǒng)計算機視覺技術(shù)已經(jīng)過時了。本文將分析每種方法的優(yōu)缺點。本文的目的是促進有關(guān)是否應(yīng)保留經(jīng)典計算機視覺技術(shù)知識的討論。本文還將探討
發(fā)表于 11-29 17:09
?1195次閱讀
浪費大量的人力成本。因此,越來越多的工程師開始將深度學(xué)習(xí)算法引入缺陷檢測領(lǐng)域,因為深度學(xué)習(xí)在特征
發(fā)表于 09-22 12:19
?952次閱讀
工業(yè)制造領(lǐng)域中,產(chǎn)品質(zhì)量的保證是至關(guān)重要的任務(wù)之一。然而,人工的檢測方法不僅費時費力,而且容易受到主觀因素的影響,從而降低了檢測的準(zhǔn)確性和一
發(fā)表于 10-24 09:29
?1695次閱讀
雖然表面缺陷檢測技術(shù)已經(jīng)不斷從學(xué)術(shù)研究走向成熟的工業(yè)應(yīng)用,但是依然有一些需要解決的問題。基于以上分析可以發(fā)現(xiàn),由于芯片表面缺陷的獨特性質(zhì),通用目標(biāo)檢
發(fā)表于 02-25 14:30
?1696次閱讀
在工業(yè)生產(chǎn)中,缺陷檢測是確保產(chǎn)品質(zhì)量的關(guān)鍵環(huán)節(jié)。傳統(tǒng)的人工檢測方法不僅效率低下,且易受人為因素影響,導(dǎo)致誤檢和漏檢問題頻發(fā)。隨著人工智能技術(shù)
發(fā)表于 07-08 10:30
?1668次閱讀
評論