從整體和邏輯線路設計上提高機電一體化產品的抗干擾能力是整體設計的指導思想,對提高系統的可靠性和抗干擾性能關系極大。對于一個新設計的系統,如果把抗干擾性能作為一個重要的問題來考慮,則系統投入運行后,抗干擾能力就強。反之,如等到設備到現場發現問題才來修修補補,往往就會事倍功半。因此,在總體設計階段,有幾個方面必須引起特別重視。
一、邏輯設計力求簡單可靠
對于一個具體的機電一體化產品,在滿足生產工藝控制要求的前提下,邏輯設計應盡量簡單,以便節省元件,方便操作。因為在元器件質量已定的前提下,整體中所用到的元器件數量愈少,系統在工作過程中出現故障的概率就愈小,亦即系統的穩定性愈高。但值得注意的是,對于一個具體的線路,必須擴大線路的穩定儲備量,留有一定的負載容度。因為線路的工作狀態是隨電源電壓、溫度、負載等因素的大小而變的。當這些因素由額定情況向惡化線路性能方向變化,最后導致線路不能正常工作時,這個范圍稱為穩定儲備量。此外,工作在邊緣狀態的線路或元件,最容易接受外界干擾而導致故障。因此,為了提高線路的帶負載能力,應考慮留有負載容度。比如一個TTL集成門電路的負載能力是可以帶8個左右同類型的邏輯門,但在設計時,一般最多只考慮帶5—6個門,以便留有一定裕度。
二、硬件自檢測和軟件自恢復的設計
由于干擾引起的誤動作多是偶發性的,因此應采取某種措施,使這種偶發的誤動作不致直接影響系統的運行。因此,在總體設計上必須設法使干擾造成的這種故障能夠盡快地恢復正常。通常的方式是,在硬件上設置某些自動監測電路。這主要是為了對一些薄弱環節加強監控,以便縮小故障范圍,增強整體的可靠性。在硬件上常用的監控和誤動作檢出方法通常有數據傳輸的奇偶檢驗(如輸入電路有關代碼的輸入奇偶校驗),存儲器的奇偶校驗以及運算電路、譯碼電路和時序電路的有關校驗等。
從軟件的運行來看,瞬時電磁干擾會影響:堆棧指針SP、數據區或程序計數器的內容,使CPU偏離預定的程序指針,進入未使用的RAM區和ROM區,引起一些如死機、死循環和程序“飛掉”等現象,因此,要合理設置軟件“陷阱”和“看門狗”并在檢測環節進行數字濾波(如粗大誤差處理)等。
審核編輯黃昊宇
-
抗干擾
+關注
關注
4文章
319瀏覽量
34675
發布評論請先 登錄
相關推薦
評論