吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何使用FIL后端部署XGBOOST模型

星星科技指導(dǎo)員 ? 來源:NVIDIA ? 作者:William Hicks ? 2022-04-11 14:35 ? 次閱讀

深度神經(jīng)網(wǎng)絡(luò)在多個(gè)領(lǐng)域的成功促使人們對如何有效地部署這些模型以用于實(shí)際應(yīng)用進(jìn)行了大量思考和努力。然而,盡管基于樹的模型(包括隨機(jī)森林和梯度增強(qiáng)模型)在表格數(shù)據(jù)分析中 continued dominance 非常重要,而且對于解釋性非常重要的用例非常重要,但加速部署基于樹的模型(包括隨機(jī)森林和梯度增強(qiáng)模型)的努力卻沒有受到太多關(guān)注。

隨著 DoorDash 和 CapitalOne 等組織轉(zhuǎn)向基于樹的模型來分析大量關(guān)鍵任務(wù)數(shù)據(jù),提供工具以幫助部署此類模型變得簡單、高效和高效變得越來越重要。

NVIDIA Triton 推理服務(wù)器 提供在 CPUGPU 上部署深度學(xué)習(xí)模型的完整解決方案,支持多種框架和模型執(zhí)行后端,包括 PyTorch 、 TensorFlow 、 ONNX 、 TensorRT 等。從 21.06.1 版開始,為了補(bǔ)充 NVIDIA Triton 推理服務(wù)器現(xiàn)有的深度學(xué)習(xí)功能,新的 林推理庫( FIL )后端 提供了對樹模型的支持,例如 XGBoost 、 LightGBM 、 Scikit-Learn RandomForest , RAPIDS 卡米爾森林 ,以及 Treelite 支持的任何其他型號。

基于 RAPIDS 森林推理庫 (NVIDIA ),NVIDIA Triton 推理服務(wù)器 FIL 后端允許用戶利用 NVIDIA Triton 推理服務(wù)器的相同特性,以達(dá)到 deep learning 模型的最優(yōu)吞吐量/延遲,以在相同的系統(tǒng)上部署基于樹的模型。

在本文中,我們將簡要介紹NVIDIA Triton 推理服務(wù)器本身,然后深入介紹如何使用 FIL 后端部署 XGBOOST 模型的示例。使用 NVIDIA GPU ,我們將看到,我們不必總是在部署更精確的模型或保持延遲可控之間做出選擇。

在示例筆記本中,通過利用 FIL 后端的 GPU 加速推理,在一臺配備八臺 V100 GPU 的 NVIDIA DGX-1 服務(wù)器上,我們將能夠部署比 CPU 更復(fù)雜的欺詐檢測模型,同時(shí)將 p99 延遲保持在 2ms 以下, still 每秒提供超過 400K 的推斷( 630MB / s ),或者比 CPU 上的吞吐量高 20 倍。

NVIDIA Triton 推理服務(wù)器

NVIDIA Triton 推理服務(wù)器為 machine learning 模型的實(shí)時(shí)服務(wù)提供了完整的開源解決方案。 NVIDIA Triton 推理服務(wù)器旨在使性能模型部署過程盡可能簡單,它為在實(shí)際應(yīng)用中嘗試部署 ML 算法時(shí)遇到的許多最常見問題提供了解決方案,包括:

多框架 支持 : 支持所有最常見的深度學(xué)習(xí)框架和序列化格式,包括 PyTorch 、 TensorFlow 、 ONNX 、 TensorRT 、 OpenVINO 等。隨著 FIL 后端的引入, NVIDIA Triton 推理服務(wù)器還提供對 XGBoost 、 LightGBM 、 Scikit Learn / cuML RandomForest 和任何框架中的 Treelite 序列化模型的支持。

Dynamic Batching : 允許用戶指定一個(gè)批處理窗口,并將在該窗口中收到的任何請求整理成更大的批處理,以優(yōu)化吞吐量。

多種查詢類型 :優(yōu)化多種查詢類型的推理:實(shí)時(shí)、批處理、流式,還支持模型集成。

使用 NVIDIA 管道和集合 推理服務(wù)器部署的 管道和集合 Triton 型號可以通過復(fù)雜的管道或集成進(jìn)行連接,以避免客戶端和服務(wù)器之間,甚至主機(jī)和設(shè)備之間不必要的數(shù)據(jù)傳輸。

CPU 模型執(zhí)行 : 雖然大多數(shù)用戶希望利用 GPU 執(zhí)行帶來的巨大性能提升,但 NVIDIA Triton 推理服務(wù)器允許您在 CPU 或 GPU 上運(yùn)行模型,以滿足您的特定部署需求和資源可用性。

Dynamic Batching [VZX337 ]如果NVIDIA Triton 推理服務(wù)器不提供對部分管道的支持,或者如果需要專門的邏輯將各種模型鏈接在一起,則可以使用自定義 PythonC++后端精確地添加所需的邏輯。

Run anywhere :在擴(kuò)展的云或數(shù)據(jù)中心、企業(yè)邊緣,甚至在嵌入式設(shè)備上。它支持用于人工智能推理的裸機(jī)和虛擬化環(huán)境(如 VMware vSphere )。

Kubernetes 和 AI 平臺支持 :

作為 Docker 容器提供,并可輕松與 Kubernetes 平臺集成,如 AWS EKS 、谷歌 GKE 、 Azure AKS 、阿里巴巴 ACK 、騰訊 TKE 或紅帽 OpenShift 。

可在 Amazon SageMaker 、 Azure ML 、 Google Vertex AI 、阿里巴巴 AI 彈性算法服務(wù)平臺和騰訊 TI-EMS 等托管 CloudAI 工作流平臺上使用。

Enterprise support : NVIDIA AI 企業(yè)軟件套件包括對 NVIDIA Triton 推理服務(wù)器的全面支持,例如訪問 NVIDIA AI 專家以獲得部署和管理指導(dǎo)、安全修復(fù)和維護(hù)發(fā)布的優(yōu)先通知、長期支持( LTS )選項(xiàng)和指定的支持代理。

圖 1:NVIDIA Triton 推理服務(wù)器架構(gòu)圖。

為了更好地了解如何利用 FIL 后端的這些特性來部署樹模型,我們來看一個(gè)特定的用例。

示例: FIL 后端的欺詐檢測

為了在 NVIDIA Triton 推理服務(wù)器中部署模型,我們需要一個(gè)配置文件,指定有關(guān)部署選項(xiàng)和序列化模型本身的一些細(xì)節(jié)。模型當(dāng)前可以按以下任意格式序列化:

XGBoost 二進(jìn)制格式

XGBoost JSON

LightGBM 文本格式

Treelite 二進(jìn)制檢查點(diǎn)文件

在下面的筆記本中,我們將介紹部署欺詐檢測模型過程的每個(gè)步驟,從培訓(xùn)模型到編寫配置文件以及優(yōu)化部署參數(shù)。在此過程中,我們將演示 GPU 部署如何在保持最小延遲的同時(shí)顯著提高吞吐量。此外,由于 FIL 可以輕松地?cái)U(kuò)展到非常大和復(fù)雜的模型,而不會大幅增加延遲,因此我們將看到,對于任何給定的延遲預(yù)算,在 GPU 上部署比 CPU 上更復(fù)雜和準(zhǔn)確的模型是可能的。

筆記本:

抱歉,出了點(diǎn)問題。 Reload

抱歉,我們無法顯示此文件。

抱歉,此文件無效,無法顯示。

查看器需要 iframe 。

view raw正如我們在本筆記本中所看到的, NVIDIA Triton 推理服務(wù)器的 FIL 后端允許我們使用序列化的模型文件和簡單的配置文件輕松地為樹模型提供服務(wù)。如果沒有 NVIDIA Triton 推理服務(wù)器,那些希望服務(wù)于其他框架中的 XGBoost 、 LightGBM 或隨機(jī)林模型的人通常會求助于吞吐量延遲性能差且不支持多個(gè)框架的手動搖瓶服務(wù)器。 NVIDIA Triton 推理服務(wù)器的動態(tài)批處理和并發(fā)模型執(zhí)行自動最大化吞吐量,模型分析器有助于選擇最佳部署配置。手動選擇可能需要數(shù)百種組合,并且可能會延遲模型的展開。有了 FIL 后端,我們可以為來自所有這些框架的模型提供服務(wù),而無需定制代碼和高度優(yōu)化的性能。

結(jié)論

使用 FIL 后端,NVIDIA Triton 推理服務(wù)器現(xiàn)在提供了一個(gè)高度優(yōu)化的實(shí)時(shí)服務(wù)的森林模型,無論是在他們自己或旁邊的深度學(xué)習(xí)模型。雖然支持 CPU 和 GPU 執(zhí)行,但我們可以利用 GPU 加速來保持低延遲和高吞吐量,即使對于復(fù)雜的模型也是如此。正如我們在示例筆記本中看到的,這意味著即使延遲預(yù)算很緊,也不需要通過退回到更簡單的模型來降低模型的準(zhǔn)確性。

如果您想嘗試部署自己的 XGBOST 、 LITGBM 、 SKEXCEL 或 CUML 森林模型進(jìn)行實(shí)時(shí)推理,那么您可以很容易地從 Docker container 、NVIDIA 的 GPU 優(yōu)化的 AI 軟件目錄中拉取 NVIDIA NVIDIA AI 企業(yè)套件 推理服務(wù)器 Docker container 。您可以在 FIL 后端文檔 中找到入門所需的一切。如果準(zhǔn)備部署到 Kubernetes 集群, NVIDIA Triton 還提供了 Helm charts 示例。對于希望在實(shí)際工作負(fù)載下試用 Triton 推理服務(wù)器的企業(yè), NVIDIA LaunchPad 計(jì)劃提供了一組在 Triton 中使用 Triton 的精心策劃的實(shí)驗(yàn)室。

Krieger 說:“ STAR 的獨(dú)特之處在于,它是第一個(gè)在軟組織中規(guī)劃、調(diào)整和執(zhí)行手術(shù)計(jì)劃的機(jī)器人系統(tǒng),只需極少的人工干預(yù)?!?。

關(guān)于作者

William Hicks 是NVIDIA RAPIDS 團(tuán)隊(duì)的高級軟件工程師。??怂箵碛胁继m代斯大學(xué)物理學(xué)碩士學(xué)位和布朗大學(xué)文學(xué)藝術(shù)碩士學(xué)位。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • NVIDIA
    +關(guān)注

    關(guān)注

    14

    文章

    5076

    瀏覽量

    103726
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4776

    瀏覽量

    129358
  • 服務(wù)器
    +關(guān)注

    關(guān)注

    12

    文章

    9306

    瀏覽量

    86069
收藏 人收藏

    評論

    相關(guān)推薦

    xgboost超參數(shù)調(diào)優(yōu)技巧 xgboost在圖像分類中的應(yīng)用

    的成績。然而,XGBoost模型涉及眾多超參數(shù),這些參數(shù)的組合和調(diào)優(yōu)對于模型性能至關(guān)重要。以下是一些XGBoost超參數(shù)調(diào)優(yōu)的技巧: 理解主要超參數(shù) : 學(xué)習(xí)率(Learning Ra
    的頭像 發(fā)表于 01-31 15:16 ?86次閱讀

    常見xgboost錯(cuò)誤及解決方案

    XGBoost(eXtreme Gradient Boosting)是一種流行的機(jī)器學(xué)習(xí)算法,用于解決分類和回歸問題。盡管它非常強(qiáng)大和靈活,但在使用過程中可能會遇到一些常見的錯(cuò)誤。以下是一些常見
    的頭像 發(fā)表于 01-19 11:22 ?459次閱讀

    使用Python實(shí)現(xiàn)xgboost教程

    使用Python實(shí)現(xiàn)XGBoost模型通常涉及以下幾個(gè)步驟:數(shù)據(jù)準(zhǔn)備、模型訓(xùn)練、模型評估和模型預(yù)測。以下是一個(gè)詳細(xì)的教程,指導(dǎo)你如何在Pyt
    的頭像 發(fā)表于 01-19 11:21 ?400次閱讀

    xgboost與LightGBM的優(yōu)勢對比

    在機(jī)器學(xué)習(xí)領(lǐng)域,集成學(xué)習(xí)算法因其出色的性能和泛化能力而受到廣泛關(guān)注。其中,XGBoost和LightGBM是兩種非常流行的梯度提升框架。 1. 算法基礎(chǔ) XGBoost(eXtreme
    的頭像 發(fā)表于 01-19 11:18 ?389次閱讀

    xgboost的并行計(jì)算原理

    之一。 XGBoost簡介 XGBoost是一種基于梯度提升框架的集成學(xué)習(xí)算法,它通過構(gòu)建多個(gè)決策樹來提高模型的預(yù)測性能。與傳統(tǒng)的梯度提升樹相比,XGBoost在算法上進(jìn)行了優(yōu)化,包括
    的頭像 發(fā)表于 01-19 11:17 ?376次閱讀

    xgboost在圖像分類中的應(yīng)用

    XGBoost(eXtreme Gradient Boosting)是一種高效的機(jī)器學(xué)習(xí)算法,它基于梯度提升框架,通過構(gòu)建多個(gè)弱學(xué)習(xí)器(通常是決策樹)來提高模型的性能。XGBoost因其出色的性能
    的頭像 發(fā)表于 01-19 11:16 ?371次閱讀

    企業(yè)AI模型部署攻略

    當(dāng)下,越來越多的企業(yè)開始探索和實(shí)施AI模型,以提升業(yè)務(wù)效率和競爭力。然而,AI模型部署并非易事,需要企業(yè)在多個(gè)層面進(jìn)行細(xì)致的規(guī)劃和準(zhǔn)備。下面,AI部落小編為企業(yè)提供一份AI模型
    的頭像 發(fā)表于 12-23 10:31 ?175次閱讀

    AI模型部署邊緣設(shè)備的奇妙之旅:目標(biāo)檢測模型

    以及邊緣計(jì)算能力的增強(qiáng),越來越多的目標(biāo)檢測應(yīng)用開始直接在靠近數(shù)據(jù)源的邊緣設(shè)備上運(yùn)行。這不僅減少了數(shù)據(jù)傳輸延遲,保護(hù)了用戶隱私,同時(shí)也減輕了云端服務(wù)器的壓力。然而,在邊緣端部署高效且準(zhǔn)確的目標(biāo)檢測模型
    發(fā)表于 12-19 14:33

    如何開啟Stable Diffusion WebUI模型推理部署

    如何開啟Stable Diffusion WebUI模型推理部署
    的頭像 發(fā)表于 12-11 20:13 ?171次閱讀
    如何開啟Stable Diffusion WebUI<b class='flag-5'>模型</b>推理<b class='flag-5'>部署</b>

    AI模型部署和管理的關(guān)系

    AI模型部署與管理是AI項(xiàng)目成功的兩大支柱,它們之間既相互獨(dú)立又緊密相連,共同推動著AI技術(shù)從實(shí)驗(yàn)室走向?qū)嶋H應(yīng)用。
    的頭像 發(fā)表于 11-21 10:02 ?216次閱讀

    企業(yè)AI模型部署怎么做

    AI模型部署作為這一轉(zhuǎn)型過程中的關(guān)鍵環(huán)節(jié),其成功實(shí)施對于企業(yè)的長遠(yuǎn)發(fā)展至關(guān)重要。在此,AI部落小編為您介紹企業(yè)AI模型部署的步驟以及注意事項(xiàng)。
    的頭像 發(fā)表于 11-04 10:15 ?202次閱讀

    使用TVM量化部署模型報(bào)錯(cuò)NameError: name \'GenerateESPConstants\' is not defined如何解決?

    各位好,我在使用TVM部署模型時(shí),遇到一下錯(cuò)誤,請問如何解決?我進(jìn)esp.py文件看,有如下兩個(gè)函數(shù)是找不到定義的: GenerateESPConstants(), ExtractConstantsFromPartitionedFunction(),
    發(fā)表于 06-28 10:50

    模型端側(cè)部署加速,都有哪些芯片可支持?

    電子發(fā)燒友網(wǎng)報(bào)道(文/李彎彎)大模型在端側(cè)部署是指將大型神經(jīng)網(wǎng)絡(luò)模型部署在移動終端設(shè)備上,使這些設(shè)備能夠直接運(yùn)行這些模型,從而執(zhí)行各種人工智
    的頭像 發(fā)表于 05-24 00:14 ?4370次閱讀

    基于stm32h743IIK在cubeai上部署keras模型,模型輸出結(jié)果都是同一組概率數(shù)組,為什么?

    基于stm32h743IIK,在cubeai上部署keras模型,模型輸出結(jié)果都是同一組概率數(shù)組,一點(diǎn)也搞不明白,看社區(qū)也有相同的問題,但沒有解決方案
    發(fā)表于 05-20 08:18

    使用CUBEAI部署tflite模型到STM32F0中,模型創(chuàng)建失敗怎么解決?

    看到CUBE_AI已經(jīng)支持到STM32F0系列芯片,就想拿來入門嵌入式AI。 生成的模型很小,是可以部署到F0上的,但是一直無法創(chuàng)建成功。 查閱CUBE AI文檔說在調(diào)用create函數(shù)前,要啟用
    發(fā)表于 03-15 08:10
    7人百家乐桌布| 财神百家乐官网的玩法技巧和规则 | 百家乐代理合作| 百家乐代打公司| 真人百家乐官网园| 娱乐城设计| 温州百家乐的玩法技巧和规则| 百家乐官网几点不用补牌| 百家乐官网概率怎么算| 德州扑克比赛视频| 百家乐如何盈利| 百家乐官网15人桌| 澳门百家乐官网娱乐城怎么样| bet365怎么上不去| 太阳神百家乐的玩法技巧和规则 | 微信百家乐官网群规则大全| 百家乐官网怎么看门路| bet365官方网址| 博E百百家乐的玩法技巧和规则 | 百家乐赢钱皇冠| 百家乐官网分析资料| 太阳城伞| 百家乐之三姐妹赌博机| 百家乐官网微笑玩| 澳门网络博彩| 大发888赢钱最多的| 百家乐tt娱乐场| 百家乐怎样算大小| 免费百家乐官网的玩法技巧和规则 | 成都百家乐官网牌具| 百家乐官网电投网址| 治县。| 日博| 大发888备用a99.com| 免费百家乐计划软件| 里尼的百家乐策略| 百家乐娱乐城体育| 财富百家乐官网的玩法技巧和规则| 平潭县| 亚斯博彩网| bet365维护|