吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

剖析穩定鋰金屬電池的長效固體電解質界面

鋰電聯盟會長 ? 來源:能源學人 ? 作者:Seon Hwa Lee ? 2021-06-04 15:25 ? 次閱讀

由鋰金屬陽極、酯基電解質、富鎳Li[NixCoyMn1-x-y]O2(NCM)陰極組成的鋰電池已成為下一代儲能技術的潛在候選者。然而,尋找一種能高度兼容NCM陰極,同時在鋰金屬陽極表面形成穩定固體電解質界面(SEI)層的固體電解質是一個重大的挑戰。

本文介紹了一種新的電解質添加劑—飽和的P2S5-CS2(PSC)溶液(1wt.%),以修飾酯基電解質,可形成離子導電SEI來穩定鋰金屬。研究發現,P2S5可以通過CS2溶解,該溶液可以促進原位形成含有無機Li?P?S化合物(鋰離子導體,可能是Li3PS4)的穩定SEI,使無枝晶和高度可逆的鋰金屬陽極成為可能。

由鋰金屬陽極、PSC修飾電解質和Li[Ni0.73Co0.10Mn0.15Al0.02]O2陰極組成的電池,具有高容量,高循環穩定性,在超過1500次循環后仍具有高庫侖效率。

【研究背景】

鋰金屬陽極(LMBs)作為一種極具發展前景的替代電池技術,受到了科學界和工業界的廣泛關注。鋰金屬陽極的理論容量是傳統石墨陽極的10倍(石墨,372mAhg-1,Li,3862mAhg-1),而且它的電化學氧化還原的電位較低(相比標準氫電極,?3.040V);

這些特性表明鋰金屬陽極有助于實現具有高能量密度的電池。鋰金屬陽極和高壓Li[NixCoyMn1-x-y]O2(NCM)陰極(Li|NCM電池)作為有前途的高能電池技術,重新引起了研究人員的興趣。

然而,在實踐中,上述Li|NCM電池的優點被金屬Li固有的高反應活性引起的電極?電解質界面極度不穩定所掩蓋。一般來說,在充電過程中,Li的沉積是不均勻的Li|NCM電池引起了Li枝晶的生長,并導致了固體電解質界面(SEI)的開裂。由于SEI層的重新配置,這加速了鋰離子與電解質的消耗,導致循環不良和庫倫效率低。

Li|NCM電池的另一個關鍵缺點是選擇合適的電解質溶劑很有限。因為酯基電解質與高壓NCM的陰極具良好的兼容性,其在商用鋰離子電池和Li|NCM電池中的應用比醚基和液體電解質更廣泛。然而,由于其熱力學不穩定,酯基電解質通常對鋰金屬陽極表面具有高反應活性,酯基電解質產生SEI是不穩定的。

因此,合理設計酯基電解質,在鋰金屬上形成穩定的SEI 層是目前Li|NCM電池技術面臨的重要挑戰。

在這項研究中,一個新的飽和P2S5-CS2(PSC)溶液(1wt %)作為添加劑來修飾酯基電解質,電解質中包括0.8 M LiTFSI,0.2 M LiDFOB和0.05 M LiPF6 溶于體積比為3:1的EMC和FEC混合溶劑中。

本研究最大的新穎之處在于在酯基電解質中引入P2S5和CS2的組合硫化物作為添加劑,以提高其在LMBs中的實用型,尤其是通過CS2溶解P2S5的新方法(方案1a,1b)克服了P2S5在酯基溶劑中溶解度低的問題。同時,使用修飾的電解質可以有效的緩解Li枝晶(方案1c,1d)。

【內容詳情】

首先,使用未修飾和PSC修飾的電解質組裝了 Li|NCMA73電池,以分析PSC添加劑對鋰金屬陽極上形成SEI的影響。SEI在第一個周期后積累在鋰金屬陽極表面。結果表明,修飾電解質中的添加劑在抑制鋰枝晶的形成和限制循環過程中對電解質的消耗方面起著重要作用。為了證實PSC修飾電解質對循環過程中沉積的 Li形貌的影響,組裝了使用未修飾和PSC修飾電解質的 Li|Li對稱電池進行測試。

在未修飾的電解質中沉積的Li呈纖維和多孔狀,尺寸分布不均勻。這種鋰金屬陽極表面的枝晶結構的表面積較大,加速了電解質的消耗,并在循環過程中產生很大一部分的“死鋰”。相比之下,在修飾過的電解質中,鋰金屬陽極上沉積的形貌更致密。

在橫截面SEM圖像中,兩者之間的鋰金屬陽極的表面形貌差異更明顯。在放電后,未修飾電解液中的鋰金屬陽極表面皺褶嚴重,有殘余的鋰枝晶結構,而在修飾過的電解液中陽極表面在循環過后是光滑的。

為了探討PSG添加劑對Li|Li對稱電池電化學循環穩定性的影響,進行了恒電流循環測試。結果顯示P-S鍵合的誘導化合物可以穩定SEI層,從而抑制“死鋰”的形成。圖3對比了Li|NCMA73電池在不同電解液下的循環性能。首先,未修飾和修飾過的電解質,在第一次循環中表現出相同的電壓曲線和可逆容量。這意味著PSC添加劑沒有電化學反應活性,不會對循環性能產生不利影響。

未修飾電解液電池的容量在250次循環后急劇下降且不穩定。相比之下,電解液PSC修飾過的電池,在循環1500次后能有較好的容量(60%)。在更高的充電倍率下,PSC添加劑的效果更加明顯,修飾后的電池壽命比未修飾的電池長10倍。

【結論】

一種全新的飽和P2S5 CS2 (PSC)被用來修飾酯基電解質,以提高鋰金屬陽極的穩定性。無機P2S5鹽可以溶解在由CS2中,從而克服它的低溶解度問題,這在之前沒有報道過。一個含有Li?P?S化合物的穩定SEI可以形成在鋰金屬陽極表面,實現了無枝晶和高度可逆的鋰金屬陽極。

PSC修飾電解質可以大大提高鋰脫嵌的可逆性,并和高壓NCMA73陰極有良好的兼容性,即使在實際條件下,也展現了長效的循環穩定性。本文所提出的策略可以為開發高能量和高功率密度的實用鋰金屬電池電解質提供新的途徑。

Seon Hwa Lee, Jang-Yeon Hwang, Jun Ming, Hun Kim, Hun-Gi Jung, and Yang-Kook Sun*, Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries, ACS Energy Letters2021, DOI:10.1021/acsenergylett.1c00661

https://pubs.acs.org/doi/10.1021/acsenergylett.1c00661

本文轉自能源學人

第一作者:Seon Hwa Lee

通訊作者:Yang-Kook Sun

通訊單位:Department of Energy Engineering, Hanyang University

編輯:jq

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • SEM
    SEM
    +關注

    關注

    0

    文章

    234

    瀏覽量

    14498
  • 電解質
    +關注

    關注

    6

    文章

    820

    瀏覽量

    20158
  • 陽極
    +關注

    關注

    1

    文章

    28

    瀏覽量

    8173
  • PSC
    PSC
    +關注

    關注

    0

    文章

    15

    瀏覽量

    7764
  • 鋰金屬電池
    +關注

    關注

    0

    文章

    140

    瀏覽量

    4374

原文標題:穩定鋰金屬電池的長效固體電解質界面

文章出處:【微信號:Recycle-Li-Battery,微信公眾號:鋰電聯盟會長】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    全固態金屬電池的最新研究

    成果簡介 全固態金屬電池因其高安全性與能量密度而備受關注,但其實際應用受限于的低可逆性、有限的正極載量以及對高溫高壓操作的需求,這主要源于固態
    的頭像 發表于 01-23 10:52 ?206次閱讀
    全固態<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的最新研究

    研究論文::乙烯碳酸酯助力聚合物電解質升級,提升高電壓金屬電池性能

    1、 導讀 >> ? ? 該研究探討了乙烯碳酸酯(VC)添加劑在聚丙烯酸酯(PEA)基固態聚合物電解質中的作用。結果表明,VC添加劑顯著提升了電解質的鋰離子電導率和遷移數,同時提高了金屬
    的頭像 發表于 01-15 10:49 ?214次閱讀
    研究論文::乙烯碳酸酯助力聚合物<b class='flag-5'>電解質</b>升級,提升高電壓<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>性能

    斯坦福大學鮑哲南/崔屹PNAS:高性能金屬電池用單氟電解質

    背景介紹 金屬電池因其高理論比容量(3860 mAh g-1)和低還原電位(-3.04 V)而備受關注。然而,金屬
    的頭像 發表于 01-14 13:53 ?221次閱讀
    斯坦福大學鮑哲南/崔屹PNAS:高性能<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>用單氟<b class='flag-5'>電解質</b>

    陳軍院士團隊最新Angew,聚合物電解質新突破

    研究背景 固態金屬電池(SSLMBs)因其高的能量密度和優異的安全性能在能源存儲領域受到廣泛關注。然而,現有固態電解質(SSEs)普遍存在離子傳導性差、電極
    的頭像 發表于 01-06 09:45 ?177次閱讀
    陳軍院士團隊最新Angew,聚合物<b class='flag-5'>電解質</b>新突破

    Li3MX6全固態鋰離子電池固體電解質材料

    ? ? 研究背景 Li3MX6族鹵化物(M = Y、In、Sc等,X =鹵素)是新興的全固態鋰離子電池固體電解質材料。與現有的硫化物固體電解質
    的頭像 發表于 01-02 11:52 ?207次閱讀
    Li3MX6全固態鋰離子<b class='flag-5'>電池</b><b class='flag-5'>固體</b><b class='flag-5'>電解質</b>材料

    一種薄型層狀固態電解質的設計策略

    研 究 背 景 用固態電解質(SSE)代替有機電解液已被證明是克服高能量密度金屬電池安全性問題的有效途徑。為了開發性能優異的全固態
    的頭像 發表于 12-31 11:21 ?207次閱讀
    一種薄型層狀固態<b class='flag-5'>電解質</b>的設計策略

    半互穿網絡電解質用于高電壓金屬電池

    研究背景 基于高鎳正極的金屬電池的能量密度有望超過400 Wh kg-1,然而在高電壓充電時,高鎳正極在高度去化狀態下,Ni4+的表面反應性顯著增強,這會催化正極與
    的頭像 發表于 12-23 09:38 ?340次閱讀
    半互穿網絡<b class='flag-5'>電解質</b>用于高電壓<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>

    通過電荷分離型共價有機框架實現對金屬電池固態電解質界面的精準調控

    (-3.04 V vs SHE),被認為是次世代電池的最優選擇。然而,金屬負極的實際應用面臨諸多挑戰,其中最關鍵的問題是枝晶的生長和副反應的發生。這些問題不僅會導致
    的頭像 發表于 11-27 10:02 ?411次閱讀
    通過電荷分離型共價有機框架實現對<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>固態<b class='flag-5'>電解質</b><b class='flag-5'>界面</b>的精準調控

    全固態金屬電池陽極夾層設計

    金屬電解質的消耗。鋰離子的不均勻沉積/剝離導致枝晶的生長和電池安全風險,阻礙了
    的頭像 發表于 10-31 13:45 ?283次閱讀
    全固態<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>的<b class='flag-5'>鋰</b>陽極夾層設計

    固態電池中復合陽極上固體電解質界面的調控

    采用固體聚合物電解質(SPE)的固態金屬電池(SSLMB)具有更高的安全性和能量密度,在下一代儲能領域具有很大的應用前景。
    的頭像 發表于 10-29 16:53 ?545次閱讀
    固態<b class='flag-5'>電池</b>中復合<b class='flag-5'>鋰</b>陽極上<b class='flag-5'>固體</b><b class='flag-5'>電解質</b><b class='flag-5'>界面</b>的調控

    無極電容器有電解質嗎,無極電容器電解質怎么測

    無極電容器通常存在電解質電解質在無極電容器中起著重要作用,它可以增加電容器的電容量和穩定性。然而,電解質也可能帶來一些問題,如漏電和壽命問題。
    的頭像 發表于 10-01 16:45 ?472次閱讀

    鈮酸調控固態電解質電場結構促進鋰離子高效傳輸!

    聚合物基固態電解質得益于其易加工性,最有希望應用于下一代固態金屬電池。
    的頭像 發表于 05-09 10:37 ?926次閱讀
    鈮酸<b class='flag-5'>鋰</b>調控固態<b class='flag-5'>電解質</b>電場結構促進鋰離子高效傳輸!

    最新Nature Energy開發新型稀釋劑助推金屬電池實用化!

    眾所知周,通過調控電解液來穩定固體電解質間相(SEI),對于延長金屬
    的頭像 發表于 05-07 09:10 ?954次閱讀
    最新Nature Energy開發新型稀釋劑助推<b class='flag-5'>鋰</b><b class='flag-5'>金屬</b><b class='flag-5'>電池</b>實用化!

    不同類型的電池電解質都是什么?

    電解質通過促進離子在充電時從陰極到陽極的移動以及在放電時反向的移動,充當使電池導電的催化劑。離子是失去或獲得電子的帶電原子,電池電解質由液體,膠凝和干燥形式的可溶性鹽,酸或其他堿組成
    的頭像 發表于 02-27 17:42 ?1771次閱讀

    新型固體電解質材料可提高電池安全性和能量容量

    利物浦大學的研究人員公布了一種新型固體電解質材料,這種材料能夠以與液體電解質相同的速度傳導鋰離子,這是一項可能重塑電池技術格局的重大突破。
    的頭像 發表于 02-19 16:16 ?977次閱讀
    豪门国际网上娱乐| 爱拼百家乐官网的玩法技巧和规则 | 真人百家乐最高赌注| 百家乐官网在线投注系统| 布尔津县| 百家乐发牌器8副| 宁波市| 百家乐汝河路| 马鞍山市| 百家乐赌博大赢家| 金宝博百家乐官网现金| 信誉好百家乐平台| 米易县| 百家乐西园出售| 大亨百家乐官网娱乐城| 百家乐任你博娱乐场开户注册| 百家乐官网概率下注法| 百家乐公式与赌法| 百家乐官网视频赌博| 威尼斯人娱乐场 新世纪| 星际百家乐官网娱乐城| 大发888娱乐英皇国际| 中骏百家乐官网的玩法技巧和规则| 开户娱乐城送20彩金| 百家乐开户送18元| 乐九百家乐官网娱乐城| 利博百家乐的玩法技巧和规则 | 思南县| 沙龙百家乐娱乐城| 曲阳县| 至尊百家乐| 百家乐官网破解秘| 达州市| 三亚百家乐的玩法技巧和规则| 百家乐官网楼梯缆 | 谁会玩百家乐官网的玩法技巧和规则| 亿酷棋牌世界 完整版官方免费下载| 墓地附近做生意风水 | ceo娱乐城信誉| 百家乐玩揽法的论坛| 百家乐官网赌场详解|