吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

CdS核—金等離子體衛星納米結構增強光催化析氫反應

電子設計 ? 來源:電子設計 ? 作者:電子設計 ? 2020-12-26 03:58 ? 次閱讀

通過使用半導體材料光催化將水分解產生氫氣是將太陽能轉化為清潔化學能的有前景的方法,并且已經引起了相當大的關注。然而,大多數半導體光催化劑由于其窄的光譜響應間隔和高的載流子復合速率而表現出低的光催化活性。目前已經開發了許多策略來處理這些問題,例如能帶工程,形態剪裁,用金屬或非金屬助催化劑加載以及設計新型反應體系。目前獲得的純水光催化制氫的最高能量轉換效率僅為1%。然而,這還遠遠達不到工業化的最低要求。 因此,尋求新的有效策略來進一步提高半導體基催化劑的光催化效率正變得越來越迫切。

【成果簡介】

近日,廈門大學的李劍鋒教授(通訊作者)團隊開發了一種高活性的CdS核心-金等離子體衛星納米結構復合催化劑,可有效促進可見光下水分還原產氫。與純CdS相比,由于Au衛星的表面等離子體共振(SPR)效應,這種催化劑表現出高400倍以上的光催化活性。此外,它們的活性強烈依賴于納米顆粒的粒徑,并且在可見光照射下使用CdS-16nm Au獲得了非常高的光催化氫產量6385μmolg-1h-1。通過調整催化劑的結構和反應條件,對CdS核-金等離子體衛星催化劑的增強機理進行了全面的研究。 結合近場增強和“熱”電子轉移的協同效應已被揭示,并且導致了巨大的增強。相關研究成果“CdS core-Au plasmonic satellites nanostructure enhanced photocatalytic hydrogen evolution reaction”為題發表在Nano Energy上。

圖一 CdS-Au納米結構的裝配示意圖及物理表征

(a)CdS核-金等離子體衛星納米結構的裝配過程

(b)CdS-16nm Au復合催化劑的SEM圖像

(c)CdS-16nm金復合催化劑的HRTEM圖像

(d)CdS-16nm Au復合催化劑的EDS元素映射

圖二 CdS- Au復合材料的光學性能表征

(a)CdS的量子效率(黑色)和UV-Vis DRS光譜(藍色)

(b)CdS-16nm Au的16nm Au納米顆粒的紫外-可見吸收光譜(黃色),量子效率(黑色)和UV-Vis DRS光譜(紅色)

(c)CdS-16nm Au的時域有限差分(FDTD)模擬模型

(d)CdS-16nm Au納米結構表面上的電磁場分布

圖三 反應機理圖

(a,b)使用(a)裸Au納米粒子和(b)二氧化硅分離Au納米粒子的“熱”電子誘導的pNTP與DMAB的反應的示意圖

(c)使用55nm Au和55nm Au @ SiO2在638nm激光照射下pNTP的SERS光譜。

(d)不同催化劑在不同個體波長下的氫氣產生速率

圖四 產氫性能對比

(a)CdS和復合催化劑在不同波長下的氫產率。

(b)不同粒徑的Au納米粒子的紫外-可見吸收光譜。

審核編輯:符乾江
聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 半導體
    +關注

    關注

    334

    文章

    27711

    瀏覽量

    222657
  • 光學材料
    +關注

    關注

    0

    文章

    15

    瀏覽量

    6483
收藏 人收藏

    評論

    相關推薦

    等離子體的一些基礎知識

    等離子體(Plasma)是一種電離氣體,通過向氣體提供足夠的能量,使電子從原子或分子中掙脫束縛、釋放出來,成為自由電子而獲得,通常含有自由和隨機移動的帶電粒子(如電子、離子)和未電離的中性粒子。由于
    的頭像 發表于 01-20 10:07 ?159次閱讀
    <b class='flag-5'>等離子體</b>的一些基礎知識

    OptiFDTD應用:納米盤型諧振腔等離子體波導濾波器

    )等離子波導相比,金屬-絕緣-金屬(MIM)波導具有很強的光約束,對SPPs來說,其傳播距離可接受。 ?有許多種類的納米波導濾波器:齒形等離子體波導[2],盤型諧振腔Channel
    發表于 01-09 08:52

    等離子的基本屬性_等離子體如何發生

    射頻等離子體(RF等離子體)是在氣流中通過外部施加的射頻場形成的。當氣體中的原子被電離時(即電子在高能條件下與原子分離時),就會產生等離子體。這種電離過程可以通過各種方法實現,包括熱
    的頭像 發表于 01-03 09:14 ?209次閱讀
    <b class='flag-5'>等離子</b>的基本屬性_<b class='flag-5'>等離子體</b>如何發生

    等離子體發射器的工作原理

    在探索宇宙的征途中,人類一直在尋找更高效、更環保的推進技術。 等離子體基礎 等離子體,被稱為物質的第四態,是一種由離子、電子和中性粒子組成的高溫、高電導率的氣體。在自然界中,等離子體
    的頭像 發表于 11-29 10:11 ?553次閱讀

    等離子體技術在航天中的作用

    的推力,從而提高航天器的效率和經濟性。 霍爾效應推進器(Hall Effect Thruster, HET) 霍爾效應推進器是一種常見的等離子體推進器,它通過電場加速離子產生推力。這種推進器在低地球軌道(LEO)衛星和深空探測任
    的頭像 發表于 11-29 10:10 ?739次閱讀

    等離子體電導率的影響因素

    等離子體,作為物質的第四態,廣泛存在于自然界和工業應用中。從太陽風到熒光燈,等離子體的身影無處不在。等離子體的電導率是衡量其導電性能的關鍵參數,它決定了等離子體在電磁場中的行為。 1.
    的頭像 發表于 11-29 10:08 ?615次閱讀

    等離子體的定義和特征

    等離子體的定義 等離子體是一種由離子、電子和中性粒子組成的電離氣體。在這種狀態下,物質的部分或全部原子被電離,即原子與電子分離,形成了帶正電的離子
    的頭像 發表于 11-29 10:06 ?1187次閱讀

    等離子體在醫療領域的應用

    等離子體的特性 等離子體是一種高度電離的氣體,它包含大量的自由電子和離子。這種物質狀態具有高能量密度、高反應活性和良好的導電性。等離子體
    的頭像 發表于 11-29 10:04 ?458次閱讀

    等離子體清洗的原理與方法

    的污染物發生化學反應,從而去除或改變污染物的化學性質。 物理轟擊 :等離子體中的離子和中性粒子可以對材料表面進行物理轟擊,通過撞擊力去除表面的污染物。 紫外光照射 :等離子體中的紫外光
    的頭像 發表于 11-29 10:03 ?418次閱讀

    為什么干法刻蝕又叫低溫等離子體刻蝕

    本文介紹了為什么干法刻蝕又叫低溫等離子體刻蝕。 什么是低溫等離子體刻蝕,除了低溫難道還有高溫嗎?等離子體的溫度?? ? 等離子體是物質的第四態,并不是只有半導體制造或工業領域中才會有
    的頭像 發表于 11-16 12:53 ?348次閱讀
    為什么干法刻蝕又叫低溫<b class='flag-5'>等離子體</b>刻蝕

    什么是等離子體

    等離子體,英文名稱plasma,是物質的第四態,其他三態有固態,液態,氣態。在半導體領域一般是氣體被電離后的狀態,又被稱為‘電漿’,具有帶電性和流動性的特點。
    的頭像 發表于 11-05 09:34 ?413次閱讀
    什么是<b class='flag-5'>等離子體</b>

    什么是電感耦合等離子體,電感耦合等離子體的發明歷史

    電感耦合等離子體(Inductively Coupled Plasma, ICP)是一種常用的等離子體源,廣泛應用于質譜分析、光譜分析、表面處理等領域。ICP等離子體通過感應耦合方式將射頻能量傳遞給氣體,激發成
    的頭像 發表于 09-14 17:34 ?1008次閱讀

    電感耦合等離子體的基本原理及特性

    在電感耦合等離子體系統中,射頻電源常操作在13.56 MHz,這一頻率能夠有效地激發氣體分子產生高頻振蕩,形成大量的正離子、電子和中性粒子。通過適當調節氣體流量、壓力和射頻功率,可以實現等離子體的高溫、高密度和高均勻性。因此,I
    的頭像 發表于 09-14 14:44 ?1276次閱讀

    通過結合發射和吸收光譜法比較激光等離子體的激發溫度

    激光等離子體是一種在許多科學和工業領域廣泛應用的重要現象。理解和測量其激發溫度對于材料科學、物理學和工程學都有著至關重要的意義。近期,一篇題為《Comparison of excitation
    的頭像 發表于 06-12 06:36 ?428次閱讀

    利用氨等離子體預處理進行無縫間隙fll工藝的生長抑制

    理想的負斜率,沉積過程應能夠實現“自下而上的生長”行為。在本研究中,利用等離子體處理的生長抑制過程,研究了二氧化硅等離子體增強原子層沉積(PE-ALD)過程在溝槽結構中自下而上的生長。
    的頭像 發表于 03-29 12:40 ?447次閱讀
    利用氨<b class='flag-5'>等離子體</b>預處理進行無縫間隙fll工藝的生長抑制
    先锋百家乐官网的玩法技巧和规则 | 手机bet365| 百家乐视频看不到| 博彩论坛| 百家乐官网太阳城怎么样| 百家乐利来| 百家乐官网过两关| 大发888网页版体育| 阿玛尼百家乐官网的玩法技巧和规则| 大发8888下载| 百家乐试玩网站| 百家乐官网3宜3忌| 路虎百家乐的玩法技巧和规则| 百家乐官网投注翻倍方法| 威尼斯人娱乐城赌百家乐| 百家乐官网创立几年了| 观塘区| 百家乐智能分析| 至尊百家乐官网网| bet365主页器| 澳门百家乐网址| 百家乐官网软件编辑原理| 百家乐官网玩法守则| 威尼斯人娱乐网站安全吗| 百家乐官网游戏什么时间容易出对| 如皋市| 大发888-娱乐| 百家乐平六亿财富| 乐天堂百家乐官网赌场娱乐网规则 | 美女百家乐的玩法技巧和规则| 百家乐官网赢家电子书| 百家乐翻天粤语| 澳门百家乐手机软件| 巴比伦百家乐官网的玩法技巧和规则| 在线百家乐官网代理| 大发888游戏好吗| 百家乐游戏平台有哪些哪家的口碑最好| 百家乐官网赌场走势图| 庆云县| 爱玩棋牌下载| 百家乐五湖四海赌场娱乐网规则 |