吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

相控陣天線方向圖——錐削對整個陣列的影響

電子設(shè)計 ? 來源:電子設(shè)計 ? 作者:電子設(shè)計 ? 2020-12-24 18:37 ? 次閱讀

簡介

在第一部分中,我們介紹了相控陣概念、波束轉(zhuǎn)向和陣列增益。在第二部分中,我們討論了柵瓣和波束斜視概念。在這第三部分中,我們首先討論天線旁瓣,以及錐削對整個陣列的影響。錐削就是操控單個元件的振幅對整體天線響應(yīng)的影響。

在第一部分中未應(yīng)用錐削,且從圖中可以看出第一旁瓣為–13 dBc。錐削提供了一種減少天線旁瓣的方法,但會降低天線增益和主瓣波束寬度。在簡要介紹錐削之后,我們會詳細(xì)說明與天線增益相關(guān)的幾個要點。

傅里葉變換:矩形函數(shù) ? sinc函數(shù)

電氣工程中,有各種不同的方法可以將一個域中的矩形函數(shù)轉(zhuǎn)變?yōu)榱硪粋€域中的sinc函數(shù)。最常見的形式是時域中的矩形脈沖轉(zhuǎn)換成sinc函數(shù)的頻譜分量。這個轉(zhuǎn)換過程是可逆的,在寬帶應(yīng)用中,寬帶波形也可以轉(zhuǎn)換為時域中的窄脈沖。相控陣天線也具有類似的特性:沿陣列平面軸的矩形加權(quán)按照正弦函數(shù)輻射方向圖。

應(yīng)用到此特性,以sinc函數(shù)表示的第一旁瓣只有-13dBc是有問題的。圖1顯示了這個原理。

圖1.時域中的矩形脈沖在頻域中產(chǎn)生正弦函數(shù),第一旁瓣僅為–13 dBc。

錐削(或加權(quán))

要解決旁瓣問題,可以在整個矩形脈沖內(nèi)使用加權(quán)處理。這在FFT中很常見,相控陣中的錐削選項則是直接模擬了FFT中加權(quán)。遺憾的是,加權(quán)也是存在缺點的,它雖然實現(xiàn)了減少旁瓣但需要以加寬主瓣為代價。圖2顯示了一些加權(quán)函數(shù)示例。

圖2.加權(quán)函數(shù)示例。

波形與天線類比

從時間到頻率的轉(zhuǎn)換是很平常的,大多數(shù)電氣工程師自然會明白。但是,對于剛接觸相控陣的工程師來說,如何使用天線方向圖類比在一開始并不明確。為此,我們用場域激勵代替時域信號,并用空間域代替頻域輸出。

時域 → 場域

v(t)—電壓是時間的函數(shù)

E(x)—場強(qiáng)與孔徑中的位置呈函數(shù)關(guān)系

頻域 → 空間域

Y(f)—功率譜密度是頻率的函數(shù)

G(q)—天線增益是角度的函數(shù)

圖3顯示了這些原理。在這里,我們比較了陣列中應(yīng)用兩種不同加權(quán)的輻射能量。圖3a和圖3c顯示場域。每個點表示這個N = 16陣列中一個元件的振幅。在天線之外,沒有輻射能量,輻射從天線邊緣開始。在圖3a中,場強(qiáng)出現(xiàn)突變,而在圖3c中,場強(qiáng)隨著距離天線邊緣的距離增大而逐漸增大。對輻射能量造成的影響分別如圖3b和圖3d所示。

圖3.顯示變窄元件轉(zhuǎn)化為輻射能量加權(quán)的圖表;

(A)對所有元件使用統(tǒng)一加權(quán);(b)正弦函數(shù)在空間內(nèi)輻射;(c)對所有元件使用海明窗加權(quán)處理;以及(d)以加寬主波束為代價,將輻射旁瓣降低到40 dBc。

在下一節(jié)中,我們將介紹影響天線方向圖性能的兩種附加誤差項。第一種是互耦。在本文中,我們只是提出存在此問題,并且給出用于量化此影響的EM模型的數(shù)量。第二種是由于在相移控制中精度有限而產(chǎn)生的量化旁瓣。我們對量化誤差進(jìn)行了更深入地處理,并對量化旁瓣進(jìn)行了量化。

互耦誤差

這里討論的所有方程和陣列因子圖都假設(shè)元件是相同的,并且每個元件都具有相同的輻射方向圖。但事實并非如此。其中一個原因是互耦,即相鄰元件之間耦合。元件分散在陣列中與元件彼此緊密排列相比,其輻射性能會發(fā)生很大變化。位于陣列邊緣的元件和位于陣列中心的元件所處的環(huán)境不同。此外,當(dāng)波束轉(zhuǎn)向時,元件之間的互耦也會改變。所有這些影響會產(chǎn)生一個附加的誤差項,需要天線設(shè)計人員加以考慮,在實際設(shè)計中,需要花大量精力使用電磁仿真器來表征這些條件下的輻射影響。

波束角度分辨率和量化旁瓣

相控陣天線還有另一個缺陷,用于波束轉(zhuǎn)向的時間延遲單元或移相器的分辨率是有限的。這通常利用離散時間(或相位)步長來實現(xiàn)數(shù)字控制。但是,如何確定延遲單元或移向器的分辨率或位數(shù),以達(dá)到的所需的波束質(zhì)量呢?

與常見的理解相反,波束角度分辨率并不等于移相器的分辨率。從方程式1(第二部分中的方程式2)中,我們可以看出這樣的關(guān)系:

我們可以用整個陣列中的相移來表達(dá)這種關(guān)系,需要將陣列寬度D替換為元件間隔d。然后如果我們將移相器ΦLSB 替換為?Φ,我們可以粗略估算波束角度分辨率。對于N個元件以半個波長間隔排列的線性陣列來說,波束角度分辨率如方程式2所示。

這是背離瞄準(zhǔn)線的波束角度分辨率,描述了當(dāng)陣列的一半相移為零,另一半的相移為移相器的LSB時的波束角度。如果不到一半的陣列通過編程達(dá)到相位LSB,則角度可能更小。圖4顯示使用2位移相器的30元件陣列的波束角度(相位LSB逐漸增加)。注意,波束角度增加,直到一半元件移相LSB,然后在所有元件移相LSB時歸零。當(dāng)波束角度通過陣列中的相位差而變化時,這是有意義的。注意,正如前面計算的那樣,此特性的峰值為θRES。

圖4.30元件線性陣列在LSB時的波束角度與元件數(shù)量之間的關(guān)系。

圖5.移相器分辨率為2位至8位時,波束角度分辨率與陣列大小的關(guān)系。

圖5顯示不同移相器分辨率下θRES與陣列直徑(元件間隔為λ/2)的關(guān)系。這表明,即使是LSB為90°的非常粗糙的2位移相器,也可以在直徑為30個元件的陣列中實現(xiàn)1°的分辨率。在第一部分使用方程式10針對30元件、λ/2間隔條件進(jìn)行求解時,主瓣波束寬度約為3.3°,表示即便使用這個非常粗糙的移相器,我們也具備足夠的分辨率。那么,使用更高分辨率的移相器又會得出什么結(jié)果?從時間采樣系統(tǒng)(數(shù)據(jù)轉(zhuǎn)換器)和空間采樣系統(tǒng)(相控陣天線)之間的類比可以看出,較高分辨率的數(shù)據(jù)轉(zhuǎn)換器產(chǎn)生較低的量化本底噪聲。更高分辨率的相位/時間偏移器會導(dǎo)致較低的量化旁瓣電平(QSLL)。

圖6顯示之前描述的編程采用θRES波束分辨率角度的2位30元件線性陣列的移相器設(shè)置和相位誤差。一半陣列設(shè)為零相移,另一半設(shè)為90°LSB。注意,誤差(理想量化相移與實際量化相移之間的差異)曲線呈鋸齒狀。

圖6.陣列中的元件相移和相位誤差。

圖7顯示同一天線在轉(zhuǎn)向0°和轉(zhuǎn)向波束分辨率角度時的天線方向圖。請注意,由于移相器的量化誤差,出現(xiàn)了嚴(yán)重的方向圖退化。

圖7.在最小波束角度下具有量化旁瓣的天線方向圖。

當(dāng)孔徑內(nèi)發(fā)生最大量化誤差,其他所有元件都是零誤差,且相鄰元件間隔LSB/2時,出現(xiàn)最糟糕的量化旁瓣情形。這代表了最大可能的量化誤差和孔徑誤差的最大周期。圖8顯示了使用2位30元件時的這種情況。

圖8.最糟糕的天線量化旁瓣情形——2位。

這種情況在可預(yù)測的波束角度下(如方程3所示)發(fā)生。

其中 n < 2BITS,且n為奇數(shù)。對于2位系統(tǒng),這種情況會在±14.5°和±48.6°范圍之間發(fā)生4次。圖9顯示該系統(tǒng)在n = 1,q = +14.5°時的天線方向圖。注意在–50°時具有明顯的–7.5 dB量化旁瓣。

圖9.最糟糕的天線量化旁瓣情形:2位,n = 1,30元件。

除了量化誤差依次為0和LSB/2的特殊情況外,在其他波束角度下,rms誤差隨著波束在孔徑上的擴(kuò)散而減小。事實上,對于n為偶數(shù)值的角度方程(方程式3),量化誤差為0。如果我們繪制在不同移相器分辨率下最高量化旁瓣的相對電平,會出現(xiàn)一些有趣的方向圖。圖9顯示100元件線性陣列最糟糕的QSLL,該陣列使用海明錐形,以便將量化旁瓣與本節(jié)前面討論的經(jīng)典開窗旁瓣區(qū)分開來。

注意,在30°時,所有量化誤差都趨于0,這可以顯示為sin(30°) = 0.5時的結(jié)果。請注意,對于任何特定的n位移相器,在最糟糕電平下的波束角度在更高分辨率n下會顯示零量化誤差。在這里可以看出描述的最糟糕旁瓣電平下的波束角度,以及QSLL在每位分辨率下改善了6 dB。

圖10.在2位至6位移相器分辨率下,最糟糕的量化旁瓣與波束角度的關(guān)系。

圖11.最糟糕的量化旁瓣電平與移相器分辨率的關(guān)系。

2位至8位移相器分辨率的最大量化旁瓣電平QSLL如圖11所示,它遵循類似的數(shù)據(jù)轉(zhuǎn)換器量化噪聲規(guī)律,

或每位分辨率約6 dB。在2位時,QSLL電平約為-7.5 dB,高于數(shù)據(jù)轉(zhuǎn)換器進(jìn)行隨機(jī)信號采樣時經(jīng)典的+12 dB。這種差異可以視為在孔徑采樣時周期性出現(xiàn)的鋸齒誤差導(dǎo)致的結(jié)果,其中空間諧波會增加相位。注意QSLL與孔徑大小不呈函數(shù)關(guān)系。

總結(jié)

我們現(xiàn)在可以總結(jié)出天線工程師面臨的與波束寬度和旁瓣相關(guān)的一些挑戰(zhàn):

角度分辨率需要窄波束。窄波束需要大孔徑,這又需要許多元件。此外,波束在背離瞄準(zhǔn)線時會變寬,所以需要額外的元件,以在掃描角度增大時保持波束寬度不變。

似乎可以通過增大元件間隔來擴(kuò)大整個天線區(qū)域,而無需額外增加元件。此舉可以讓波束變窄,但是,很遺憾,如果元件分布不均,會導(dǎo)致產(chǎn)生柵瓣。可嘗試通過減小掃描角度,同時采用有意隨機(jī)顯示元件方向圖的非周期陣列,來利用增加的天線區(qū)域,同時最大限度減少柵瓣問題。

旁瓣是另一個問題,我們已知可以通過將陣列增益朝向邊緣逐漸減小來解決。但是,這種錐削以波束變寬為代價,又會需要更多元件。移相器分辨率會導(dǎo)致出現(xiàn)量化旁瓣,在設(shè)計天線時也必須加以考慮。對于采用移相器的天線,波束斜視現(xiàn)象會導(dǎo)致角位移與頻率相互影響,從而限制高角度分辨率下可用的帶寬。

以上就是有關(guān)相控陣天線方向圖全部三個部分的內(nèi)容。在第一部分中,我們介紹波束指向、陣列因子和天線增益。在第二部分中,我們討論柵瓣和波束斜視的缺點。在第三部分中,我們討論錐削和量化誤差。本文不是針對精通電磁和輻射元件設(shè)計的天線設(shè)計工程師,而是針對在相控陣領(lǐng)域工作的大量相鄰學(xué)科的工程師,這些直觀的解釋,將有助于他們理解影響整個天線方向圖的性能的各種因素。

審核編輯:符乾江
聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 現(xiàn)場總線
    +關(guān)注

    關(guān)注

    3

    文章

    521

    瀏覽量

    38640
  • 相控陣天線
    +關(guān)注

    關(guān)注

    0

    文章

    44

    瀏覽量

    9069
收藏 人收藏

    評論

    相關(guān)推薦

    FRED應(yīng)用:透鏡的設(shè)計

    簡介 透鏡,通常也被稱作軸對稱棱鏡,是一種擁有一個圓錐面和一個平面的透鏡。透鏡常用來產(chǎn)生強(qiáng)度分布為貝塞爾函數(shù)型的光束或者一個圓錐形的非發(fā)散光束。可以用于激光打孔/光學(xué)穿孔,光學(xué)捕獲,光學(xué)相干
    發(fā)表于 01-14 09:47

    FRED應(yīng)用:透鏡的設(shè)計

    簡介 透鏡,通常也被稱作軸對稱棱鏡,是一種擁有一個圓錐面和一個平面的透鏡。透鏡常用來產(chǎn)生強(qiáng)度分布為貝塞爾函數(shù)型的光束或者一個圓錐形的非發(fā)散光束??梢杂糜诩す獯蚩?光學(xué)穿孔,光學(xué)捕獲,光學(xué)相干
    發(fā)表于 12-19 12:39

    相控陣雷達(dá)電源芯片詳解

    和性能的提升,同時也對整個系統(tǒng)的集成度要求越來越高。二相控陣雷達(dá)整體電源方案 相控陣雷達(dá)主要由天線陣列、相位器件、信號處理器、控制器四部分組成,信號處理器主要由FPGA、DSP等高性能
    發(fā)表于 11-17 10:53

    分析DCDC4644電源芯片在F-35戰(zhàn)機(jī)相控陣雷達(dá)的應(yīng)用

    控和移相器控制,能得到精確可預(yù)測的輻射方向圖和波束指向。雷達(dá)工作時發(fā)射機(jī)通過饋線網(wǎng)絡(luò)將功率分配到每個天線單元,通過大量獨立的天線單元將能量輻射出去并在空間進(jìn)行功率合成,形成需要的波束指向。下圖是
    發(fā)表于 10-31 17:34

    DCDC 4644 電源芯片在相控陣雷達(dá)的應(yīng)用

    控和移相器控制,能得到精確可預(yù)測的輻射方向圖和波束指向。雷達(dá)工作時發(fā)射機(jī)通過饋線網(wǎng)絡(luò)將功率分配到每個天線單元,通過大量獨立的天線單元將能量輻射出去并在空間進(jìn)行功率合成,形成需要的波束指向。下圖是
    的頭像 發(fā)表于 10-29 16:47 ?413次閱讀
    DCDC 4644 電源芯片在<b class='flag-5'>相控陣</b>雷達(dá)的應(yīng)用

    OPA657做的跨阻放大器,輸出過零時失真了,被頂了的原因?

    一個方向接,因為按照電路圖中方向,輸出是負(fù)值,我直接將光電二極管反接,輸出就是正的值了。當(dāng)完全按照電路接法(光電二極管與圖中一樣),輸出頂部(0V以上被頂)被
    發(fā)表于 08-23 07:29

    用于Ka波段衛(wèi)星通信的雙頻段圓極化無源相控陣天線

    電子發(fā)燒友網(wǎng)站提供《用于Ka波段衛(wèi)星通信的雙頻段圓極化無源相控陣天線.pdf》資料免費下載
    發(fā)表于 07-23 12:44 ?2次下載

    Ka波段相控陣天線的平面近場單探頭測試方法

    電子發(fā)燒友網(wǎng)站提供《Ka波段相控陣天線的平面近場單探頭測試方法.pdf》資料免費下載
    發(fā)表于 07-23 12:43 ?0次下載

    一種K頻段雙波束接收衛(wèi)通相控陣天線

    電子發(fā)燒友網(wǎng)站提供《一種K頻段雙波束接收衛(wèi)通相控陣天線.pdf》資料免費下載
    發(fā)表于 07-23 12:42 ?0次下載

    我們一起揭秘ADC、相控陣天線、復(fù)雜電磁環(huán)境、高速信號完整性等測試方案

    朝陽區(qū)北辰東路8號)舉行!中星聯(lián)華科技(北京)有限公司作為本次大會的重要支持單位,將為大家分享多通道ADC測試、高速ADC進(jìn)階測試、相控陣天線測試、復(fù)雜電磁環(huán)境模擬系
    的頭像 發(fā)表于 05-13 17:37 ?878次閱讀
    我們一起揭秘ADC、<b class='flag-5'>相控陣天線</b>、復(fù)雜電磁環(huán)境、高速信號完整性等測試方案

    天馬微電子推出低成本相控陣天線及電子設(shè)備

    本發(fā)明核心在于一種新型相控陣天線及配套電子設(shè)備,相控陣天線天線組件、投影組件和控制組件組成。其中,天線組件包含大量陣列式分布的
    的頭像 發(fā)表于 05-11 16:32 ?932次閱讀
    天馬微電子推出低成本<b class='flag-5'>相控陣天線</b>及電子設(shè)備

    相控陣雷達(dá)技術(shù)的開發(fā)方案

    由于強(qiáng)調(diào)將相控陣變成實用設(shè)備,因此建造了一個900MHz、十六元件線性陣列固定裝置作為陣列測試臺,可以嘗試、測試和練習(xí)陣列組件,如天線元件、
    發(fā)表于 04-24 09:29 ?1045次閱讀
    <b class='flag-5'>相控陣</b>雷達(dá)技術(shù)的開發(fā)方案

    關(guān)于天線方向圖的參數(shù)詳解

    定向天線的前后比是指主瓣的最大輻射方向(規(guī)定為0°)的功率通量密度與相反方向附近(規(guī)定為180°±20°范圍內(nèi))的最大功率通量密度之比值。
    的頭像 發(fā)表于 03-19 17:33 ?4694次閱讀
    關(guān)于<b class='flag-5'>天線方向圖</b>的參數(shù)詳解

    相控陣天線在星地融合網(wǎng)絡(luò)應(yīng)用的關(guān)鍵技術(shù)

    數(shù)字波束成形的典型應(yīng)用是 Satixfy 公司L頻段32通道數(shù)字采樣延時芯片Prime,該芯片可實現(xiàn)任意極化的數(shù)字控制,多個芯片級聯(lián)支持大規(guī)模數(shù)字陣列形成。
    發(fā)表于 02-28 10:29 ?4736次閱讀
    <b class='flag-5'>相控陣天線</b>在星地融合網(wǎng)絡(luò)應(yīng)用的關(guān)鍵技術(shù)

    基于超表面天線陣列的射頻前端與數(shù)字后端聯(lián)合抗干擾方案

    本文提出一種基于超表面天線陣列的射頻前端與數(shù)字后端聯(lián)合抗干擾方案,利用超表面天線快速可重構(gòu)能力,對同一信號切換不同方向接收,令單通道等效為多通道,提高
    發(fā)表于 02-20 11:01 ?625次閱讀
    基于超表面<b class='flag-5'>天線陣列</b>的射頻前端與數(shù)字后端聯(lián)合抗干擾方案
    网页棋牌游戏| 香港六合彩特码资料| 百家乐官网tt娱乐场开户注册 | 中国百家乐的玩法技巧和规则| 百家乐官网娱乐代理| 明珠娱乐开户| 百家乐双面数字筹码| 百家乐官网赌博导航| 金溪县| 大发888-娱乐| 玩百家乐有几种公式| 24山玄空飞星排盘图| 百家乐官网平台网| 六合彩官网| 大发888信誉888娱乐城| 百家乐官网大天堂| 申博百家乐官网公式软件| 凤凰县| 边坝县| 大富豪国际娱乐城| bet365维护| 7298棋牌官网| 足球心水论坛| 雁荡棋牌游戏| 大发888娱乐城下载新澳博| 大众百家乐娱乐城| 百家乐庄闲和的倍数| 澳门百家乐打法百家乐破解方法 | 百家乐官网稳赚秘籍| 易发国际娱乐场| 大发888 加速器| 大发888 dafa888 大发官网| 大发888娱乐城大发888大发网| 博狗百家乐的玩法技巧和规则 | 做生意戴什么珠子招财| 百家乐官网五湖四海娱乐场开户注册 | 大发888游戏是真的吗| 太阳城札记| 大发888常见断续| bet365娱乐在线| 高青县|