導(dǎo)讀:在 NeurIPS 2020 上,清華大學(xué)聯(lián)合微眾銀行、微軟研究院以及博世人工智能中心提出了 Graph Random Neural Network (GRAND),一種用于圖半監(jiān)督學(xué)習(xí)的新型圖神經(jīng)網(wǎng)絡(luò)框架。在模型架構(gòu)上,GRAND 提出了一種簡單有效的圖數(shù)據(jù)增強(qiáng)方法 Random Propagation,用來增強(qiáng)模型魯棒性及減輕過平滑。基于 Random Propagation,GRAND 在優(yōu)化過程中使用一致性正則(Consistency Regularization)來增強(qiáng)模型的泛化性,即除了優(yōu)化標(biāo)簽節(jié)點的 cross-entropy loss 之外,還會優(yōu)化模型在無標(biāo)簽節(jié)點的多次數(shù)據(jù)增強(qiáng)的預(yù)測一致性。GRAND 不僅在理論上有良好的解釋,還在三個公開數(shù)據(jù)集上超越了 14 種不同的 GNN 模型,取得了 SOTA 的效果。
這項研究被收入為 NeurIPS 2020 的 Oral paper (105/9454)。
論文名稱:GraphRandom Neural Network for Semi-Supervised Learning on Graphs
研究背景
圖是用于建模結(jié)構(gòu)化和關(guān)系數(shù)據(jù)的一種通用的數(shù)據(jù)結(jié)構(gòu)。在這項工作中,我們重點研究基于圖的半監(jiān)督學(xué)習(xí)問題,這個問題的輸入是一個節(jié)點帶屬性的無向圖,其中只有一小部分節(jié)點有標(biāo)簽,我們的目的是要根據(jù)節(jié)點屬性,圖的結(jié)構(gòu)去預(yù)測無標(biāo)簽節(jié)點的標(biāo)簽。近幾年來,解決這個問題一類有效的方法是以圖卷積神經(jīng)網(wǎng)絡(luò)(GCN)[1]為代表的圖神經(jīng)網(wǎng)絡(luò)模型(GNN)。其主要思想是通過一個確定性的特征傳播來聚合鄰居節(jié)點的信息,以此來達(dá)到對特征降噪的目的。
但是,最近的研究表明,這種傳播過程會帶來一些固有的問題,例如:
1) 過平滑,圖卷積可以看做是一種特殊形式的拉普拉斯平滑,疊加多層之后節(jié)點之間的feature就會變得不可區(qū)分。
2)欠魯棒,GNN中的特征傳播會使得節(jié)點的預(yù)測嚴(yán)重依賴于特定的鄰居節(jié)點,這樣的模型對噪音的容忍度會很差,例如KDD’18的best paper[2]就表明我們甚至可以通過間接攻擊的方式通過改變目標(biāo)節(jié)點鄰居的屬性來達(dá)到攻擊目標(biāo)節(jié)點的目的。
3)過擬合,在半監(jiān)督節(jié)點分類的任務(wù)中,有標(biāo)簽的節(jié)點很少,而一般GNN僅僅依靠這些少量的監(jiān)督信息做訓(xùn)練,這樣訓(xùn)練出來的模型泛化能力會比較差。
模型介紹
為了解決這些問題,在這個工作中我們提出了圖隨機(jī)神經(jīng)網(wǎng)絡(luò)(GRAND),一種簡單有效的圖半監(jiān)督學(xué)習(xí)方法。與傳統(tǒng)GNN不同,GRAND采用隨機(jī)傳播(Random Propagation)策略。具體來說,我們首先隨機(jī)丟棄一些節(jié)點的屬性對節(jié)點特征做一個隨機(jī)擾動,然后對擾動后的節(jié)點特征做一個高階傳播。這樣一來,每個節(jié)點的特征就會隨機(jī)地與其高階鄰居的特征進(jìn)交互,這種策略會降低節(jié)點對某些特定節(jié)點的依賴,提升模型的魯棒性。
除此之外,在同質(zhì)圖中,相鄰的節(jié)點往往具有相似的特征及標(biāo)簽,這樣節(jié)點丟棄的信息就可以被其鄰居的信息補(bǔ)償過來。因此這樣形成的節(jié)點特征就可以看成是一種針對圖數(shù)據(jù)的數(shù)據(jù)增強(qiáng)方法。基于這種傳播方法,我們進(jìn)而設(shè)計了基于一致性正則(consistency regularization)的訓(xùn)練方法,即每次訓(xùn)練時進(jìn)行多次Random Propagation 生成多個不同的節(jié)點增強(qiáng)表示,然后將這些增強(qiáng)表示輸入到一個MLP中,除了優(yōu)化交叉熵?fù)p失之外,我們還會去優(yōu)化MLP模型對多個數(shù)據(jù)增強(qiáng)產(chǎn)生預(yù)測結(jié)果的一致性。這種一致性正則損失無需標(biāo)簽,可以使模型利用充足的無標(biāo)簽數(shù)據(jù),以彌補(bǔ)半監(jiān)督任務(wù)中監(jiān)督信息少的不足,提升模型的泛化能力,減小過擬合的風(fēng)險。
圖一
圖二
我們對GRAND進(jìn)行了理論分析,分析結(jié)果表明,這種Random propagation + Consistency Regularization 的訓(xùn)練方式實際上是在優(yōu)化模型對節(jié)點與其鄰居節(jié)點預(yù)測置信度之間的一致性。
實驗結(jié)果
我們在GNN基準(zhǔn)數(shù)據(jù)集中的實驗結(jié)果對GRAND進(jìn)行了評測,實驗結(jié)果顯示GRAND在3個公開數(shù)據(jù)集中顯著超越了14種不同種類的GNN模型,取得了SOTA的效果。實驗結(jié)果(圖三):
圖三
此外我們還對模型泛化性,魯棒性,過平滑等問題進(jìn)行了分析,實驗結(jié)果顯示1)Consistency Regularization 和Random Propagation均能提升模型的泛化能力(圖四);2)GRAND具有更好的對抗魯棒性(圖五);3)GRAND可以減輕過平滑問題(圖六)。
圖四
圖五
圖六
責(zé)任編輯:xj
-
神經(jīng)網(wǎng)絡(luò)
+關(guān)注
關(guān)注
42文章
4780瀏覽量
101174 -
半監(jiān)督學(xué)習(xí)
+關(guān)注
關(guān)注
0文章
20瀏覽量
2561
發(fā)布評論請先 登錄
相關(guān)推薦
清華大學(xué)師生到訪智行者科技交流學(xué)習(xí)
博世與清華大學(xué)續(xù)簽人工智能研究合作協(xié)議
SynSense時識科技與海南大學(xué)聯(lián)合研究成果發(fā)布
![SynSense時識科技與海南<b class='flag-5'>大學(xué)聯(lián)合</b>研究成果發(fā)布](https://file1.elecfans.com/web2/M00/0A/F2/wKgaomcYmtGAaEvFAAAwXlOmQgA225.png)
【《大語言模型應(yīng)用指南》閱讀體驗】+ 基礎(chǔ)篇
BP神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)機(jī)制
神經(jīng)網(wǎng)絡(luò)如何用無監(jiān)督算法訓(xùn)練
前饋神經(jīng)網(wǎng)絡(luò)的基本結(jié)構(gòu)和常見激活函數(shù)
卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別
反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別
如何使用神經(jīng)網(wǎng)絡(luò)進(jìn)行建模和預(yù)測
神經(jīng)網(wǎng)絡(luò)反向傳播算法原理是什么
神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些
鼾聲監(jiān)測神經(jīng)網(wǎng)絡(luò)
助聽器降噪神經(jīng)網(wǎng)絡(luò)模型
清華大學(xué)聯(lián)合中交興路發(fā)布《中國公路貨運大數(shù)據(jù)碳排放報告》
![<b class='flag-5'>清華大學(xué)聯(lián)合</b>中交興路發(fā)布《中國公路貨運大數(shù)據(jù)碳排放報告》](https://file1.elecfans.com/web2/M00/E3/51/wKgZomY8cb-ALPdtAAAzgNtIkk4915.png)
評論