吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習如何應對自動駕駛面臨的挑戰?

我快閉嘴 ? 來源:千家網 ? 作者:Naveen Joshi ? 2020-10-23 14:24 ? 次閱讀

自動駕駛汽車中使用深度學習可以幫助克服各種挑戰,例如了解行人的行為,找到最短的路線以及對人和物體進行準確檢測

根據一份報告,2018年約有80%的道路交通事故是由于人為錯誤造成的。因此,將自動駕駛汽車納入主流的主要目標之一是消除對人類駕駛員的需求并減少道路致死率。使用自動駕駛汽車進行的實驗無疑表明在一定程度上減少了道路傷亡人數。

但是,仍然有很多人經常看到有關自動駕駛汽車事故的新聞,例如Uber自動駕駛汽車事故在美國亞利桑那州撞死了一名行人。發生事故的原因據說是自動駕駛汽車無法準確檢測和識別行人。為了最大程度地減少此類事故,需要對自動駕駛車輛進行大量的訓練,以準確檢測其路線中是否存在人員和任何其他物體,這就是深度學習的介入。自動駕駛汽車的深度學習可以幫助他們有效地分類和檢測道路和周圍環境中的人或物體。

深度學習是機器學習的一個子集,它使用人工神經網絡來模仿人腦的復雜功能。深度學習可以在沒有任何人工干預的情況下更準確地對對象進行分類。例如,假設有兩個人寫數字九(9),但是他們兩個人都以不同的方式寫數字(一個人寫9,其他人寫一個nine,底部沒有清晰的曲線)。除非掌握了所有可能的寫數字九的方法,否則深度學習網絡以外的AI算法將很難檢測到,盡管形狀不同,但兩個數字都代表九。借助深度神經網絡進行的深度學習可以輕松地將兩個數字都識別為9。深度學習準確地對不同對象進行分類的能力可以解決自動駕駛汽車面臨的一些主要挑戰。

自動駕駛汽車深度學習如何應對某些挑戰

機器學習算法在訓練自動駕駛汽車時面臨特征提取的問題。特征提取要求程序員告訴算法他們應該尋找什么來做出決策。因此,機器學習算法的決策能力在很大程度上取決于程序員的洞察力。深度學習的功能有所不同,消除了特征提取的問題,從而使深度學習神經網絡的檢測和決策更加準確。深度學習可以提高檢測道路上障礙物的準確性和更好的決策能力,可以幫助應對自動駕駛汽車面臨的許多挑戰。

了解復雜的交通行為

駕駛是一個過程,涉及與其他駕駛員和行人的復雜互動。例如,如果騎自行車人打算轉彎,那么他或她將做出手勢示意,以通知附近的其他駕駛員。然后,駕駛員可以放慢其車輛的速度,從而允許騎自行車的人轉彎。人類依賴于通用智能來進行這種社交互動。而且,通過深度學習,自動駕駛汽車現在很有可能與其他駕駛員和行人進行社交互動。深度學習神經網絡可以幫助自動駕駛汽車檢測其他駕駛員和行人給出的導航信號,并采取適當措施避免發生任何碰撞。

在極端天氣條件下檢測招牌

自動駕駛汽車面臨的另一個主要挑戰是極端天氣條件。盡管這是任何技術都無法完全解決的環境挑戰,但深度學習可以解決極端氣候下的問題。例如,在降雪期間,道路上的招牌可能會被雪覆蓋。而且,降雪后的一段時間內,招牌可能僅部分可見。使用其他AI算法,自動駕駛汽車將很難理解招牌上的半個標志。但是借助神經網絡進行的深度學習可以從招牌上的部分可見標志創建完整標志的圖像。神經網絡將不完整的符號發送到神經層,然后將其傳遞給隱藏層,以確定完整的符號應該是什么。基于輸出,神經網絡可以根據招牌上的標志做出決策。

尋找最短的旅行路線

地球上的所有動物,包括人類在內,都可以在周圍環境中導航并靈活地探索新區域。由于神經回路的空間行為,它們的導航成為可能。動物的大腦通過在規則的六邊形網格中繪制周圍環境來導航。這些六角形圖案有助于導航,類似于地圖中的網格線。神經模式支持基于矢量的導航的假設。基于矢量的導航使大腦可以計算到所需位置的距離和方向。

可以使用基于矢量的導航功能來訓練深度學習神經網絡,以找到從點A到點B的最短路徑。通過將動物大腦使用的相同網格線模式嵌入第一層,深度學習可以計算距離和到達目的地的方向。具有基于矢量的導航和深度學習功能的自動駕駛汽車還可以檢測到任何新近可用的快捷方式的存在,以減少出行時間。

深度學習本身還需要克服諸多挑戰

盡管自動駕駛汽車有很多好處,但僅憑深度學習就無法使自動駕駛汽車成為最高級最智能的交通工具,因為阻礙自動駕駛汽車走向主流發展的障礙很多。借助深度學習,檢測對象的準確性確實會提高,但要付出大量數據的代價。基于數據表示的深度學習功能。數據在神經網絡的不同層上表示,然后根據數據模式導出輸出。由于深度學習的完整功能是基于數據的,因此與其他AI算法相比,訓練神經網絡需要更多數據,因此很難創建用于訓練它們的數據集。而且,收集訓練神經網絡所需的數據也非常耗時。

使用深度學習神經網絡的另一個挑戰是它們的黑匣子問題。如果程序做出了決定,則程序員可以撤消該決定,以找出程序做出該決定的原因。但是,深度學習不是可追溯的系統,而是在隱藏層中處理數據。開發人員只能找到輸入到神經網絡的數據及其輸出。但是,他們無法找出隱藏層中進行了哪些處理來做出決定。因此,很難知道深度學習網絡失敗的原因,因為沒有人可以追溯到發生失敗的地方。

有時,深度學習網絡甚至無法實現其本來打算完成的任務。神經網絡很難像在不同的視頻幀中一樣在小圖像變換中進行概括。例如,根據一項研究,深卷積網絡將狒狒或貓鼬標記為相同的北極熊,具體取決于背景的微小變化。

無人駕駛汽車是一項實驗,至今尚無人知道結果如何。自動駕駛汽車深度學習能否將其驅動到主流交通工具取決于技術如何進一步發展。即使克服了深度學習的挑戰,自動駕駛汽車的方式也存在其他障礙。這些汽車與IoT設備等多種技術集成在一起,以收集數據,云計算以處理數據,以及5G以提高數據傳輸速度。一旦這些技術能夠有效地協同工作,以建立良好的交通生態系統,自動駕駛汽車就能成為主流。
責任編輯:tzh

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • AI
    AI
    +關注

    關注

    87

    文章

    31536

    瀏覽量

    270358
  • 無人駕駛
    +關注

    關注

    98

    文章

    4090

    瀏覽量

    121020
  • 自動駕駛
    +關注

    關注

    785

    文章

    13932

    瀏覽量

    167017
收藏 人收藏

    評論

    相關推薦

    一文聊聊自動駕駛測試技術的挑戰與創新

    隨著自動駕駛技術的飛速發展,自動駕駛測試的重要性也日益凸顯。自動駕駛測試不僅需要驗證車輛的感知、決策、控制模塊的獨立性能,還需確保系統在復雜場景中運行的整體可靠性。然而,自動駕駛測試
    的頭像 發表于 12-03 15:56 ?301次閱讀
    一文聊聊<b class='flag-5'>自動駕駛</b>測試技術的<b class='flag-5'>挑戰</b>與創新

    重塑線控底盤技術:自動駕駛的未來支柱

    線控底盤(X-by-wire)技術,作為自動駕駛技術的核心支撐,正悄然改變著汽車工業的技術架構與市場生態。本文深入剖析了線控底盤的定義、在自動駕駛中的核心作用、當前技術狀態及其面臨挑戰
    的頭像 發表于 11-01 12:28 ?1212次閱讀

    Mobileye端到端自動駕駛解決方案的深度解析

    強大的技術優勢。 Mobileye的端到端解決方案概述 1.1 什么是端到端自動駕駛? 端到端自動駕駛解決方案是一種新型的智能系統架構,旨在通過AI學習從感知到決策再到操作的全流程。Mobileye的端到端方案依賴于
    的頭像 發表于 10-17 09:35 ?473次閱讀
    Mobileye端到端<b class='flag-5'>自動駕駛</b>解決方案的<b class='flag-5'>深度</b>解析

    自動駕駛仿真測試技術面臨挑戰#ADAS #智能駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發布于 :2024年10月12日 09:49:31

    FPGA在自動駕駛領域有哪些優勢?

    FPGA(Field-Programmable Gate Array,現場可編程門陣列)在自動駕駛領域具有顯著的優勢,這些優勢使得FPGA成為自動駕駛技術中不可或缺的一部分。以下是FPGA在自動駕駛
    發表于 07-29 17:11

    FPGA在自動駕駛領域有哪些應用?

    FPGA(Field-Programmable Gate Array,現場可編程門陣列)在自動駕駛領域具有廣泛的應用,其高性能、可配置性、低功耗和低延遲等特點為自動駕駛的實現提供了強有力的支持。以下
    發表于 07-29 17:09

    自動駕駛的傳感器技術介紹

    自動駕駛的傳感器技術是自動駕駛系統的核心組成部分,它使車輛能夠感知并理解周圍環境,從而做出智能決策。以下是對自動駕駛傳感器技術的詳細介紹,內容涵蓋常見類型、工作原理、在自動駕駛中的作用
    的頭像 發表于 07-23 16:08 ?2458次閱讀

    無人駕駛汽車需謹慎應對及存在的風險挑戰

    自動駕駛技術近期在出租車行業的滲透,成為了公眾熱議的焦點,其安全性、商業化路徑等問題再度激發了廣泛討論。隨著人工智能技術的飛躍,特別是從深度學習到多模態大模型的演進,加之政策扶持與投資熱潮的推動
    的頭像 發表于 07-13 16:51 ?2605次閱讀

    深度學習自動駕駛中的關鍵技術

    隨著人工智能技術的飛速發展,自動駕駛技術作為其中的重要分支,正逐漸走向成熟。在自動駕駛系統中,深度學習技術發揮著至關重要的作用。它通過模擬人腦的學習
    的頭像 發表于 07-01 11:40 ?866次閱讀

    中級自動駕駛架構師應該學習哪些知識

    是一個新興且不斷發展的職業。隨著技術的進步,這一領域將繼續吸引更多人才,推動自動駕駛技術的發展。 自動駕駛架構師在設計和開發自動駕駛系統時將面臨一系列
    的頭像 發表于 06-20 21:47 ?343次閱讀

    初級自動駕駛架構師應該學習哪些知識

    是一個新興且不斷發展的職業。隨著技術的進步,這一領域將繼續吸引更多人才,推動自動駕駛技術的發展。 自動駕駛架構師在設計和開發自動駕駛系統時將面臨一系列
    的頭像 發表于 06-20 21:45 ?374次閱讀

    智能駕駛大模型:有望顯著提升自動駕駛系統的性能和魯棒性

    智能駕駛大模型是近年來人工智能領域和自動駕駛領域最為前沿的研究方向之一,它融合了深度學習、多模態融合、世界模型構建等多種技術,有望顯著提升自動駕駛
    的頭像 發表于 05-07 17:20 ?1721次閱讀
    智能<b class='flag-5'>駕駛</b>大模型:有望顯著提升<b class='flag-5'>自動駕駛</b>系統的性能和魯棒性

    未來已來,多傳感器融合感知是自動駕駛破局的關鍵

    巨大的進展;自動駕駛開始摒棄手動編碼規則和機器學習模型的方法,轉向全面采用端到端的神經網絡AI系統,它能模仿學習人類司機的駕駛,遇到場景直接輸入傳感器數據,再直接輸出轉向、制動和加速信
    發表于 04-11 10:26

    FPGA在深度學習應用中或將取代GPU

    、筆記本電腦或機架式服務器上訓練神經網絡時,這不是什么大問題。但是,許多部署深度學習模型的環境對 GPU 并不友好,比如自動駕駛汽車、工廠、機器人和許多智慧城市環境,在這些環境中硬件必須忍受熱、灰塵、濕度
    發表于 03-21 15:19

    自動駕駛發展問題及解決方案淺析

    隨著科技的飛速進步,自動駕駛汽車已經從科幻概念逐漸轉變為現實。然而,在其蓬勃發展的背后,自動駕駛汽車仍面臨一系列亟待解決的問題和挑戰。本文將對這些問題進行深入的剖析,并提出相應的解決方
    的頭像 發表于 03-14 08:38 ?1236次閱讀
    百家乐谋略| 太阳城百家乐娱乐官方网| 百家乐官网游戏机破解方法| 菏泽市| 大发888真钱游戏官方网站| 百家乐官网赌场导航| 馆陶县| bet365会员注册| 百家乐策略网络游戏信誉怎么样| 百家乐电子路单破解| 康莱德百家乐官网的玩法技巧和规则| 百家乐官网人生信条漫谈| 富宁县| 娱乐城豪享博主推| sz新全讯网网站112| 黄金会百家乐赌城| 百家乐代理商博彩e族| 24山消砂| 香港百家乐官网的玩法技巧和规则| 澳门百家乐官网开户投注| 百家乐官网遥控牌靴| 太子娱乐城网址| 澳门博彩有限公司| 大发888娱乐游戏充值| 阿玛尼百家乐的玩法技巧和规则| 百家乐赌场破解| 百家乐游戏规则玩法| 立博百家乐游戏| 首席百家乐官网的玩法技巧和规则| 缅甸百家乐官网龙虎斗| 百家乐官网代理博彩正网| 百家乐官网出千大全| 石阡县| 真钱斗地主| 御金娱乐| 香港六合彩资料大全| 澳门顶级赌场娱乐网| 大发888游戏下载中心| 百家乐平注法口诀技巧| 大三元百家乐的玩法技巧和规则 | 赌博网站|