吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

誰將成為人工智能芯片領(lǐng)域的王者?

我快閉嘴 ? 來源:半導(dǎo)體行業(yè)觀察 ? 作者:半導(dǎo)體行業(yè)觀察 ? 2020-09-26 11:21 ? 次閱讀

近年來,我們看到人工智能AI)和機(jī)器學(xué)習(xí)(ML)的應(yīng)用擴(kuò)展到更廣泛的計(jì)算機(jī)和移動(dòng)應(yīng)用領(lǐng)域。現(xiàn)在,就像低成本圖形處理單元(GPU)的普及推動(dòng)了深度學(xué)習(xí)革命一樣,硬件設(shè)計(jì)(而不是算法)被預(yù)測為下一個(gè)重大發(fā)展提供基礎(chǔ)。

隨著大型企業(yè),初創(chuàng)企業(yè)和中小型企業(yè)等公司爭相建立支持AI生態(tài)系統(tǒng)的基本AI加速器技術(shù),包括知識(shí)產(chǎn)權(quán)(IP)在內(nèi)的無形資產(chǎn)的保護(hù)將成為該領(lǐng)域成功的關(guān)鍵方面之一。

近年來,ML模型的size大幅增加(大約每3.5個(gè)月翻一番),已成為ML模型準(zhǔn)確性增長的主要驅(qū)動(dòng)力之一。為了保持這種近乎摩爾定律的復(fù)雜性增長,市場上對(duì)新型AI加速器有明確的需求,這些類型的AI加速器可以支持更先進(jìn)的ML模型(用于訓(xùn)練和推理)。

在新的AI芯片中特別受益的領(lǐng)域之一是邊緣AI推理。這種在設(shè)備本身而不是在遠(yuǎn)程(通常是云)服務(wù)器上運(yùn)行AI推理的相對(duì)較新的趨勢(shì)提供了許多潛在的好處,例如消除了處理過程中的等待時(shí)間并減少了數(shù)據(jù)傳輸和帶寬,還可能增加了隱私和安全性。鑒于這些優(yōu)勢(shì),邊緣AI芯片市場的增長令人矚目。2017年才推出首款商用企業(yè)邊緣AI芯片,但Deloitte預(yù)測,2020年邊緣AI芯片的銷量將超過7.5億片。

2018年,全球AI芯片市場整體價(jià)值66.4億美元,預(yù)計(jì)未來幾年將大幅增長,到2025年將達(dá)到911.9億美元,復(fù)合年增長率為45.2%。因此,可以理解的是,許多公司都在致力于開發(fā)AI芯片。但是,該市場有望經(jīng)歷與CPU,GPU和基帶處理器市場相似的增長周期,最終將由一些大型廠商主導(dǎo)。知識(shí)產(chǎn)權(quán)(尤其是專利)是英特爾Intel)、高通(Qualcomm)和ARM等家喻戶曉的公司取得成功的關(guān)鍵,它很可能在人工智能芯片領(lǐng)域扮演類似的重要角色。

參與AI芯片市場競爭的公司范圍涵蓋英特爾,高通,ARM或英偉達(dá)等“芯片巨頭”,再到傳統(tǒng)上專注互聯(lián)網(wǎng)的科技公司(例如Alphabet或百度),以及眾多利基實(shí)體,包括Graphcore,Mythic或Wave Computing。各種通常看起來像芯片市場“局外人”的大公司也參與其中——例如,由于絕大多數(shù)邊緣 AI芯片(90%)目前都進(jìn)入消費(fèi)設(shè)備領(lǐng)域,因此許多智能手機(jī)制造商都沒有錯(cuò)失這一機(jī)會(huì)并開發(fā)了他們自己的AI加速器(例如,iPhone系列中使用的蘋果公司的八核神經(jīng)引擎)。

這場競賽目前仍未決定誰將占據(jù)主導(dǎo)地位。技術(shù)專家和投資者都將密切關(guān)注哪些公司的技術(shù)最有前途,這個(gè)領(lǐng)域?qū)⒉豢杀苊獾卦谕顿Y、收購和失敗中發(fā)展。在未來幾年內(nèi),我們可以期待看到市場領(lǐng)導(dǎo)者的出現(xiàn)。誰將成為人工智能芯片領(lǐng)域的王者,CPU市場是英特爾(77%的市場份額),基帶處理器市場是高通(43%的市場份額)?

當(dāng)前的領(lǐng)先者似乎是英特爾和英偉達(dá)。據(jù)路透社報(bào)道,英特爾的處理器目前在AI推理市場上占主導(dǎo)地位,而英偉達(dá)則在AI訓(xùn)練芯片市場上占主導(dǎo)地位。英特爾(Intel)和英偉達(dá)(Nvidia)都沒有固步自守,這從它們最近的收購和產(chǎn)品發(fā)布中就可以看出,這兩家公司的目標(biāo)似乎都是“取代”對(duì)方。就在2019年12月,英特爾斥資20億美元收購了總部位于以色列的深度學(xué)習(xí)加速器開發(fā)商Habana Labs。

Habana的Goya和Gaudi加速器包括許多技術(shù)創(chuàng)新,例如支持遠(yuǎn)程直接內(nèi)存訪問(RDMA)–從一臺(tái)計(jì)算機(jī)的內(nèi)存直接訪問另一臺(tái)計(jì)算機(jī)的內(nèi)存,而無需使用任何計(jì)算機(jī)的操作系統(tǒng)–該功能對(duì)大規(guī)模并行計(jì)算機(jī)集群特別有用。因此,可以在云上(英偉達(dá)目前占主導(dǎo)地位)訓(xùn)練復(fù)雜模型。另一方面,英偉達(dá)最近發(fā)布了其Jetson Xavier NX邊緣AI芯片,該芯片具有高達(dá)21 TOPS的驚人加速計(jì)算能力,尤其是針對(duì)AI推理。

一些規(guī)模較小的公司也令人興奮,例如總部位于布里斯托爾的Graphcore,或總部位于美國的Mythic。Graphcore最近與微軟合作,以19.5億美元的估值籌集了150mat美元。他們的旗艦產(chǎn)品——智能處理單元(IPU)——擁有令人印象深刻的性能指標(biāo)和有趣的架構(gòu)——例如,IPU將整個(gè)ML模型保存在處理器內(nèi)部,使用處理器內(nèi)存來最大限度地減少延遲和最大化內(nèi)存帶寬。Mythic的體系架構(gòu)同樣值得關(guān)注,它結(jié)合了硬件技術(shù),如computing-in-memory(無需構(gòu)建緩存層次結(jié)構(gòu)),數(shù)據(jù)流體系架構(gòu)(特別適用于基于圖的應(yīng)用程序,例如推理),和模擬計(jì)算(使用存儲(chǔ)器元件作為可調(diào)電阻,直接在存儲(chǔ)器內(nèi)部計(jì)算神經(jīng)網(wǎng)絡(luò)矩陣運(yùn)算)。Mythic在商業(yè)方面也不落后于Graphcore——它在2019年6月從家庭投資者(如軟銀)獲得了3000萬美元的融資。

目前尚不清楚誰最終將主導(dǎo)AI芯片市場,但從CPU和基帶處理器領(lǐng)域等歷史發(fā)展中得到的一個(gè)重要教訓(xùn)是,知識(shí)產(chǎn)權(quán)在決定誰將勝出、誰將長期生存方面起著重要作用。

英特爾或高通等公司提交的專利申請(qǐng)數(shù)量表明,強(qiáng)大的專利組合對(duì)于芯片市場商業(yè)成功的重要性。這些專利自1996年以來一直在增加,現(xiàn)在每年約有10000個(gè)已公布的專利系列。考慮到芯片設(shè)計(jì)反向工程的內(nèi)在可能性和fabless模式在業(yè)界的普遍使用,任何實(shí)體都很難在沒有專利組合的情況下保護(hù)其知識(shí)產(chǎn)權(quán),同時(shí)輔以其他形式的保護(hù),如商業(yè)機(jī)密(或“專有技術(shù)”)。

芯片行業(yè)的許多市場領(lǐng)導(dǎo)者都圍繞著專利授權(quán)建立了自己的商業(yè)模式。值得注意的例子包括高通和ARM控股。盡管高通的大部分收入來自芯片制造,但它的大部分利潤來自專利授權(quán)業(yè)務(wù)。高通的授權(quán)許可業(yè)務(wù)過去兩年可能受到影響,但這在很大程度上是由于與蘋果(Apple)的糾紛。蘋果已向高通一次性支付45億美元和解金,兩家公司未來還將簽署一項(xiàng)為期6年的授權(quán)協(xié)議,從而解決了蘋果與高通之間的糾紛。

ARM更進(jìn)一步,幾乎所有的收入都來自IP授權(quán),而從未出售過自己的芯片。專利授權(quán)對(duì)高通和ARM來說非常有利可圖,對(duì)那些在人工智能芯片領(lǐng)域建立了強(qiáng)大專利組合的公司來說,可能也同樣有利可圖。ARM的商業(yè)模式將為那些沒有資源涉足芯片制造的初創(chuàng)企業(yè)提供一個(gè)有吸引力的選擇,即使是在規(guī)模較小的公司成長之際,通過保持 fabless生產(chǎn)來降低風(fēng)險(xiǎn)的動(dòng)機(jī)也將保持強(qiáng)勁。

對(duì)于那些有意被收購的初創(chuàng)公司來說,毫無疑問,知識(shí)產(chǎn)權(quán)對(duì)于最強(qiáng)勁的估值至關(guān)重要。如果不是因?yàn)镠abana的專利組合可以追溯到2016年,英特爾不太可能在2019年底以20億美元的價(jià)格收購Habana;如果Graphcore沒有超過60個(gè)專利系列(共享同一初始專利申請(qǐng)的專利組),它也不太可能與微軟合作,獲得其目前19.5億美元的估值。因此,投資者的退出策略仍然決定了對(duì)健全的知識(shí)產(chǎn)權(quán)策略的需要。

相關(guān)部門的另一個(gè)重要教訓(xùn)是與專利侵權(quán)相關(guān)的巨大風(fēng)險(xiǎn)和報(bào)酬。就在2020年1月,蘋果和Broadcom因侵犯Cal Tech的Wi-Fi技術(shù)專利而被判支付11億美元的賠償金,法院裁定該專利被用于Broadcom的無線芯片中。據(jù)彭博社報(bào)道,這是有史以來第六大與專利有關(guān)的判決。因此,企業(yè)出于進(jìn)攻和防守目的建立自己的專利組合的必要性仍然很明確(防御組合意味著可能會(huì)受到反訴訟,從而免受競爭對(duì)手專利訴訟的影響)。

企業(yè)沒有忽視知識(shí)產(chǎn)權(quán)問題,有記錄顯示,人工智能芯片領(lǐng)域已有2000多個(gè)專利系列。新專利申請(qǐng)數(shù)量正在迅速增加——僅英特爾一家就在過去5年里為人工智能芯片提交了160份專利申請(qǐng)。因此,現(xiàn)有的市場領(lǐng)導(dǎo)者和新進(jìn)入者都應(yīng)注意英特爾的做法,并要謹(jǐn)記不要錯(cuò)過知識(shí)產(chǎn)權(quán)保護(hù)對(duì)其發(fā)明的重要性,尤其是在早期階段。

在過去的二十年中,圍繞知識(shí)產(chǎn)權(quán)尤其是專利法的法律環(huán)境發(fā)生了很大變化。歷史專利和技術(shù)出版物的數(shù)量不斷增加,這也繼續(xù)提高了對(duì)專利局和專利所有人尋求保持專利質(zhì)量的要求。然而,毫無疑問,知識(shí)產(chǎn)權(quán)將再次證明在這個(gè)新興行業(yè)的重要性。經(jīng)驗(yàn)豐富的技術(shù)人員和知識(shí)產(chǎn)權(quán)從業(yè)人員將利用過去的經(jīng)驗(yàn)教訓(xùn)來完善他們的戰(zhàn)略,而那些采用正確方法的公司將獲得成功,這不僅取決于他們技術(shù)的優(yōu)點(diǎn),而且取決于如何充分利用他們的知識(shí)產(chǎn)權(quán)。
責(zé)任編輯:tzh

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 處理器
    +關(guān)注

    關(guān)注

    68

    文章

    19409

    瀏覽量

    231189
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4776

    瀏覽量

    129358
  • 人工智能
    +關(guān)注

    關(guān)注

    1796

    文章

    47681

    瀏覽量

    240298
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8439

    瀏覽量

    133087
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    卡諾模型為人工智能領(lǐng)域提供了一種全新的視角

    在探索人工智能如何更深層次滿足用戶需求、提升用戶體驗(yàn)的旅程中,卡諾模型(Kano Model)提供了一個(gè)極具價(jià)值的理論框架。這一模型不僅為產(chǎn)品開發(fā)者帶來了深刻的洞察力,同時(shí)也為人工智能領(lǐng)域的創(chuàng)新提供
    的頭像 發(fā)表于 12-11 10:17 ?260次閱讀

    嵌入式和人工智能究竟是什么關(guān)系?

    、連接主義和深度學(xué)習(xí)等不同的階段。目前,人工智能已經(jīng)廣泛應(yīng)用于各種領(lǐng)域,如自然語言處理、計(jì)算機(jī)視覺、智能推薦等。 嵌入式系統(tǒng)和人工智能在許多方面都存在密切的關(guān)聯(lián)性。首先,嵌入式系統(tǒng)可
    發(fā)表于 11-14 16:39

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第6章人AI與能源科學(xué)讀后感

    幸得一好書,特此來分享。感謝平臺(tái),感謝作者。受益匪淺。 在閱讀《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》的第6章后,我深刻感受到人工智能在能源科學(xué)領(lǐng)域中的巨大潛力和廣泛應(yīng)用。這一章詳細(xì)
    發(fā)表于 10-14 09:27

    AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章-AI與生命科學(xué)讀后感

    農(nóng)業(yè)、環(huán)保等,為人類社會(huì)的可持續(xù)發(fā)展做出貢獻(xiàn)。 總結(jié) 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第4章關(guān)于AI與生命科學(xué)的部分,為我們展示了一個(gè)充滿希望和機(jī)遇的未來。在這個(gè)未來中,人工智能將成為
    發(fā)表于 10-14 09:21

    《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》第一章人工智能驅(qū)動(dòng)的科學(xué)創(chuàng)新學(xué)習(xí)心得

    ,無疑為讀者鋪設(shè)了一條探索人工智能(AI)如何深刻影響并推動(dòng)科學(xué)創(chuàng)新的道路。在閱讀這一章后,我深刻感受到了人工智能技術(shù)在科學(xué)領(lǐng)域的廣泛應(yīng)用潛力以及其帶來的革命性變化,以下是我個(gè)人的學(xué)習(xí)心得: 1.
    發(fā)表于 10-14 09:12

    risc-v在人工智能圖像處理應(yīng)用前景分析

    的兼容性和可靠性,并為其在人工智能圖像處理領(lǐng)域的應(yīng)用提供更有力的保障。 綜上所述,RISC-V在人工智能圖像處理領(lǐng)域具有廣闊的應(yīng)用前景。其開源性、靈活性、低功耗和高性能等特點(diǎn)使得它
    發(fā)表于 09-28 11:00

    人工智能ai4s試讀申請(qǐng)

    目前人工智能在繪畫對(duì)話等大模型領(lǐng)域應(yīng)用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是個(gè)需要研究的課題,本書對(duì)ai4s基本原理和原則,方法進(jìn)行描訴,有利于總結(jié)經(jīng)驗(yàn),擬按照要求準(zhǔn)備相關(guān)體會(huì)材料。看能否有助于入門和提高ss
    發(fā)表于 09-09 15:36

    名單公布!【書籍評(píng)測活動(dòng)NO.44】AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新

    活的世界? 編輯推薦 《AI for Science:人工智能驅(qū)動(dòng)科學(xué)創(chuàng)新》聚焦于人工智能與材料科學(xué)、生命科學(xué)、電子科學(xué)、能源科學(xué)、環(huán)境科學(xué)五大領(lǐng)域的交叉融合,通過深入淺出的語言和諸多實(shí)際應(yīng)用案例,介紹了
    發(fā)表于 09-09 13:54

    報(bào)名開啟!深圳(國際)通用人工智能大會(huì)將啟幕,國內(nèi)外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會(huì)暨深圳(國際)通用人工智能產(chǎn)業(yè)博覽會(huì)將在深圳國際會(huì)展中心(寶安)舉辦。大會(huì)以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能領(lǐng)域
    發(fā)表于 08-22 15:00

    FPGA在人工智能中的應(yīng)用有哪些?

    定制化的硬件設(shè)計(jì),提高了硬件的靈活性和適應(yīng)性。 綜上所述,F(xiàn)PGA在人工智能領(lǐng)域的應(yīng)用前景廣闊,不僅可以用于深度學(xué)習(xí)的加速和云計(jì)算的加速,還可以針對(duì)特定應(yīng)用場景進(jìn)行定制化計(jì)算,為人工智能技術(shù)的發(fā)展提供有力支持。
    發(fā)表于 07-29 17:05

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V2)

    人工智能 工業(yè)檢測:芯片模組外觀檢測實(shí)訓(xùn)part1 11分40秒 https://t.elecfans.com/v/25609.html *附件:芯片模組外觀檢測實(shí)訓(xùn).pdf 人工智能
    發(fā)表于 05-10 16:46

    5G智能物聯(lián)網(wǎng)課程之Aidlux下人工智能開發(fā)(SC171開發(fā)套件V1)

    https://t.elecfans.com/v/27186.html *附件:引體向上測試案例_20240126.pdf 人工智能 工業(yè)檢測:芯片模組外觀檢測實(shí)訓(xùn)part1 11分40秒 https
    發(fā)表于 04-01 10:40

    科達(dá)嘉電感器在大數(shù)據(jù)與人工智能領(lǐng)域被廣泛應(yīng)用

    近年來,大數(shù)據(jù)與人工智能成為科技領(lǐng)域的熱門話題。大數(shù)據(jù)為人工智能提供了大量的數(shù)據(jù)作為輸入,使得人工智能算法和模型能夠通過學(xué)習(xí)做出更準(zhǔn)確的預(yù)測和決策。
    的頭像 發(fā)表于 02-29 13:56 ?537次閱讀

    人工智能AI芯片的概述

    人工智能(AI)技術(shù)的快速發(fā)展已經(jīng)成為當(dāng)今科技領(lǐng)域的熱點(diǎn)話題。
    的頭像 發(fā)表于 02-29 09:10 ?5346次閱讀

    嵌入式人工智能的就業(yè)方向有哪些?

    嵌入式人工智能的就業(yè)方向有哪些? 在新一輪科技革命與產(chǎn)業(yè)變革的時(shí)代背景下,嵌入式人工智能成為國家新型基礎(chǔ)建設(shè)與傳統(tǒng)產(chǎn)業(yè)升級(jí)的核心驅(qū)動(dòng)力。同時(shí)在此背景驅(qū)動(dòng)下,眾多名企也紛紛在嵌入式人工智能領(lǐng)域
    發(fā)表于 02-26 10:17
    大发888官方下载 网站| 高州市| 送现金百家乐官网的玩法技巧和规则 | 百家乐龙虎台布多少钱| 百家乐娱乐平台网| 横峰县| 百家乐庄闲| 屯门区| 百家乐开过的路纸| 百家乐官网打法分析| 川宜百家乐软件| 优博娱乐网站| 百家乐官网娱乐人物| 赌场百家乐是如何玩| 百家乐官网玩法和技巧| 百家乐官网手机版| 黄金百家乐的玩法技巧和规则| 百家乐官网视频中国象棋| 百家乐必赢法冯耘| 巴林左旗| 保单百家乐游戏机| 南宫市| 任我赢百家乐软件| 百家乐官网赌机破解| 百家乐三遍| 注册百家乐官网送彩金| 申博太阳城官网| 一直对百家乐官网很感兴趣.zibo太阳城娱乐城 | 百家乐二游戏机| 百家乐官网波音平台路单| 百家乐发牌盒子| 广东百家乐官网主论坛| 998棋牌游戏中心| 代理百家乐最多占成| 豪博百家乐官网现金网| 大发888娱乐城娱乐城| 贵族百家乐官网的玩法技巧和规则 | 明升百家乐官网娱乐城| 大发888亚洲游戏在线| 百家乐园千术大全| 百家乐官网网址哪里有|