吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

初學者也能看懂的DPDK解析

Linux閱碼場 ? 來源:YXQ ? 2019-08-14 18:01 ? 次閱讀

一、網(wǎng)絡(luò)IO的處境和趨勢

從我們用戶的使用就可以感受到網(wǎng)速一直在提升,而網(wǎng)絡(luò)技術(shù)的發(fā)展也從1GE/10GE/25GE/40GE/100GE的演變,從中可以得出單機的網(wǎng)絡(luò)IO能力必須跟上時代的發(fā)展。

1.傳統(tǒng)的電信領(lǐng)域

IP層及以下,例如路由器、交換機、防火墻、基站等設(shè)備都是采用硬件解決方案。基于專用網(wǎng)絡(luò)處理器(NP),有基于FPGA,更有基于ASIC的。但是基于硬件的劣勢非常明顯,發(fā)生Bug不易修復,不易調(diào)試維護,并且網(wǎng)絡(luò)技術(shù)一直在發(fā)展,例如2G/3G/4G/5G等移動技術(shù)的革新,這些屬于業(yè)務(wù)的邏輯基于硬件實現(xiàn)太痛苦,不能快速迭代。傳統(tǒng)領(lǐng)域面臨的挑戰(zhàn)是急需一套軟件架構(gòu)的高性能網(wǎng)絡(luò)IO開發(fā)框架。

2.云的發(fā)展

私有云的出現(xiàn)通過網(wǎng)絡(luò)功能虛擬化(NFV)共享硬件成為趨勢,NFV的定義是通過標準的服務(wù)器、標準交換機實現(xiàn)各種傳統(tǒng)的或新的網(wǎng)絡(luò)功能。急需一套基于常用系統(tǒng)和標準服務(wù)器的高性能網(wǎng)絡(luò)IO開發(fā)框架。

3.單機性能的飆升

網(wǎng)卡從1G到100G的發(fā)展,CPU從單核到多核到多CPU的發(fā)展,服務(wù)器的單機能力通過橫行擴展達到新的高點。但是軟件開發(fā)卻無法跟上節(jié)奏,單機處理能力沒能和硬件門當戶對,如何開發(fā)出與時并進高吞吐量的服務(wù),單機百萬千萬并發(fā)能力。即使有業(yè)務(wù)對QPS要求不高,主要是CPU密集型,但是現(xiàn)在大數(shù)據(jù)分析、人工智能等應(yīng)用都需要在分布式服務(wù)器之間傳輸大量數(shù)據(jù)完成作業(yè)。這點應(yīng)該是我們互聯(lián)網(wǎng)后臺開發(fā)最應(yīng)關(guān)注,也最關(guān)聯(lián)的。

二、Linux + x86網(wǎng)絡(luò)IO瓶頸

在數(shù)年前曾經(jīng)寫過《網(wǎng)卡工作原理及高并發(fā)下的調(diào)優(yōu)》一文,描述了Linux的收發(fā)報文流程。根據(jù)經(jīng)驗,在C1(8核)上跑應(yīng)用每1W包處理需要消耗1%軟中斷CPU,這意味著單機的上限是100萬PPS(Packet Per Second)。從TGW(Netfilter版)的性能100萬PPS,AliLVS優(yōu)化了也只到150萬PPS,并且他們使用的服務(wù)器的配置還是比較好的。假設(shè),我們要跑滿10GE網(wǎng)卡,每個包64字節(jié),這就需要2000萬PPS(注:以太網(wǎng)萬兆網(wǎng)卡速度上限是1488萬PPS,因為最小幀大小為84B《Bandwidth, Packets Per Second, and Other Network Performance Metrics》),100G是2億PPS,即每個包的處理耗時不能超過50納秒。而一次Cache Miss,不管是TLB、數(shù)據(jù)Cache、指令Cache發(fā)生Miss,回內(nèi)存讀取大約65納秒,NUMA體系下跨Node通訊大約40納秒。所以,即使不加上業(yè)務(wù)邏輯,即使純收發(fā)包都如此艱難。我們要控制Cache的命中率,我們要了解計算機體系結(jié)構(gòu),不能發(fā)生跨Node通訊。

從這些數(shù)據(jù),我希望可以直接感受一下這里的挑戰(zhàn)有多大,理想和現(xiàn)實,我們需要從中平衡。問題都有這些

1.傳統(tǒng)的收發(fā)報文方式都必須采用硬中斷來做通訊,每次硬中斷大約消耗100微秒,這還不算因為終止上下文所帶來的Cache Miss。

2.數(shù)據(jù)必須從內(nèi)核態(tài)用戶態(tài)之間切換拷貝帶來大量CPU消耗,全局鎖競爭。

3.收發(fā)包都有系統(tǒng)調(diào)用的開銷。

4.內(nèi)核工作在多核上,為可全局一致,即使采用Lock Free,也避免不了鎖總線、內(nèi)存屏障帶來的性能損耗。

5.從網(wǎng)卡到業(yè)務(wù)進程,經(jīng)過的路徑太長,有些其實未必要的,例如netfilter框架,這些都帶來一定的消耗,而且容易Cache Miss。

三、DPDK的基本原理

從前面的分析可以得知IO實現(xiàn)的方式、內(nèi)核的瓶頸,以及數(shù)據(jù)流過內(nèi)核存在不可控因素,這些都是在內(nèi)核中實現(xiàn),內(nèi)核是導致瓶頸的原因所在,要解決問題需要繞過內(nèi)核。所以主流解決方案都是旁路網(wǎng)卡IO,繞過內(nèi)核直接在用戶態(tài)收發(fā)包來解決內(nèi)核的瓶頸。

Linux社區(qū)也提供了旁路機制Netmap,官方數(shù)據(jù)10G網(wǎng)卡1400萬PPS,但是Netmap沒廣泛使用。其原因有幾個:

1.Netmap需要驅(qū)動的支持,即需要網(wǎng)卡廠商認可這個方案。

2.Netmap仍然依賴中斷通知機制,沒完全解決瓶頸。

3.Netmap更像是幾個系統(tǒng)調(diào)用,實現(xiàn)用戶態(tài)直接收發(fā)包,功能太過原始,沒形成依賴的網(wǎng)絡(luò)開發(fā)框架,社區(qū)不完善。

那么,我們來看看發(fā)展了十幾年的DPDK,從Intel主導開發(fā),到華為、思科、AWS等大廠商的加入,核心玩家都在該圈子里,擁有完善的社區(qū),生態(tài)形成閉環(huán)。早期,主要是傳統(tǒng)電信領(lǐng)域3層以下的應(yīng)用,如華為、中國電信、中國移動都是其早期使用者,交換機、路由器、網(wǎng)關(guān)是主要應(yīng)用場景。但是,隨著上層業(yè)務(wù)的需求以及DPDK的完善,在更高的應(yīng)用也在逐步出現(xiàn)。

DPDK旁路原理:

左邊是原來的方式數(shù)據(jù)從 網(wǎng)卡 -> 驅(qū)動 -> 協(xié)議棧 -> Socket接口 -> 業(yè)務(wù)

右邊是DPDK的方式,基于UIO(Userspace I/O)旁路數(shù)據(jù)。數(shù)據(jù)從 網(wǎng)卡 -> DPDK輪詢模式-> DPDK基礎(chǔ)庫 -> 業(yè)務(wù)

用戶態(tài)的好處是易用開發(fā)和維護,靈活性好。并且Crash也不影響內(nèi)核運行,魯棒性強。

DPDK支持的CPU體系架構(gòu):x86、ARM、PowerPC(PPC)

DPDK支持的網(wǎng)卡列表:https://core.dpdk.org/supported/,我們主流使用Intel 82599(光口)、Intel x540(電口)

四、DPDK的基石UIO

為了讓驅(qū)動運行在用戶態(tài),Linux提供UIO機制。使用UIO可以通過read感知中斷,通過mmap實現(xiàn)和網(wǎng)卡的通訊。

UIO原理:

要開發(fā)用戶態(tài)驅(qū)動有幾個步驟:

1.開發(fā)運行在內(nèi)核的UIO模塊,因為硬中斷只能在內(nèi)核處理

2.通過/dev/uioX讀取中斷

3.通過mmap和外設(shè)共享內(nèi)存

五、DPDK核心優(yōu)化:PMD

DPDK的UIO驅(qū)動屏蔽了硬件發(fā)出中斷,然后在用戶態(tài)采用主動輪詢的方式,這種模式被稱為PMD(Poll Mode Driver)。

UIO旁路了內(nèi)核,主動輪詢?nèi)サ粲仓袛啵珼PDK從而可以在用戶態(tài)做收發(fā)包處理。帶來Zero Copy、無系統(tǒng)調(diào)用的好處,同步處理減少上下文切換帶來的Cache Miss。

運行在PMD的Core會處于用戶態(tài)CPU100%的狀態(tài)

網(wǎng)絡(luò)空閑時CPU長期空轉(zhuǎn),會帶來能耗問題。所以,DPDK推出Interrupt DPDK模式。

Interrupt DPDK:

它的原理和NAPI很像,就是沒包可處理時進入睡眠,改為中斷通知。并且可以和其他進程共享同個CPU Core,但是DPDK進程會有更高調(diào)度優(yōu)先級。

六、DPDK的高性能代碼實現(xiàn)

1.采用HugePage減少TLB Miss

默認下Linux采用4KB為一頁,頁越小內(nèi)存越大,頁表的開銷越大,頁表的內(nèi)存占用也越大。CPU有TLB(Translation Lookaside Buffer)成本高所以一般就只能存放幾百到上千個頁表項。如果進程要使用64G內(nèi)存,則64G/4KB=16000000(一千六百萬)頁,每頁在頁表項中占用16000000 * 4B=62MB。如果用HugePage采用2MB作為一頁,只需64G/2MB=2000,數(shù)量不在同個級別。

而DPDK采用HugePage,在x86-64下支持2MB、1GB的頁大小,幾何級的降低了頁表項的大小,從而減少TLB-Miss。并提供了內(nèi)存池(Mempool)、MBuf、無鎖環(huán)(Ring)、Bitmap等基礎(chǔ)庫。根據(jù)我們的實踐,在數(shù)據(jù)平面(Data Plane)頻繁的內(nèi)存分配釋放,必須使用內(nèi)存池,不能直接使用rte_malloc,DPDK的內(nèi)存分配實現(xiàn)非常簡陋,不如ptmalloc。

2.SNA(Shared-nothing Architecture)

軟件架構(gòu)去中心化,盡量避免全局共享,帶來全局競爭,失去橫向擴展的能力。NUMA體系下不跨Node遠程使用內(nèi)存。

3.SIMD(Single Instruction Multiple Data)

從最早的mmx/sse到最新的avx2,SIMD的能力一直在增強。DPDK采用批量同時處理多個包,再用向量編程,一個周期內(nèi)對所有包進行處理。比如,memcpy就使用SIMD來提高速度。

SIMD在游戲后臺比較常見,但是其他業(yè)務(wù)如果有類似批量處理的場景,要提高性能,也可看看能否滿足。

4.不使用慢速API

這里需要重新定義一下慢速API,比如說gettimeofday,雖然在64位下通過vDSO已經(jīng)不需要陷入內(nèi)核態(tài),只是一個純內(nèi)存訪問,每秒也能達到幾千萬的級別。但是,不要忘記了我們在10GE下,每秒的處理能力就要達到幾千萬。所以即使是gettimeofday也屬于慢速API。DPDK提供Cycles接口,例如rte_get_tsc_cycles接口,基于HPET或TSC實現(xiàn)。

在x86-64下使用RDTSC指令,直接從寄存器讀取,需要輸入2個參數(shù),比較常見的實現(xiàn):

static inline uint64_trte_rdtsc(void){      uint32_t lo, hi;      __asm__ __volatile__ (                 "rdtsc" : "=a"(lo), "=d"(hi)                 );      return ((unsigned long long)lo) | (((unsigned long long)hi) << 32);}

這么寫邏輯沒錯,但是還不夠極致,還涉及到2次位運算才能得到結(jié)果,我們看看DPDK是怎么實現(xiàn):

static inline uint64_trte_rdtsc(void){    union {        uint64_t tsc_64;        struct {            uint32_t lo_32;            uint32_t hi_32;        };    } tsc;    asm volatile("rdtsc" :             "=a" (tsc.lo_32),             "=d" (tsc.hi_32));    return tsc.tsc_64;}

巧妙的利用C的union共享內(nèi)存,直接賦值,減少了不必要的運算。但是使用tsc有些問題需要面對和解決

1) CPU親和性,解決多核跳動不精確的問題

2) 內(nèi)存屏障,解決亂序執(zhí)行不精確的問題

3) 禁止降頻和禁止Intel Turbo Boost,固定CPU頻率,解決頻率變化帶來的失準問題

5.編譯執(zhí)行優(yōu)化

1) 分支預(yù)測

現(xiàn)代CPU通過pipeline、superscalar提高并行處理能力,為了進一步發(fā)揮并行能力會做分支預(yù)測,提升CPU的并行能力。遇到分支時判斷可能進入哪個分支,提前處理該分支的代碼,預(yù)先做指令讀取編碼讀取寄存器等,預(yù)測失敗則預(yù)處理全部丟棄。我們開發(fā)業(yè)務(wù)有時候會非常清楚這個分支是true還是false,那就可以通過人工干預(yù)生成更緊湊的代碼提示CPU分支預(yù)測成功率。

#pragma once#if !__GLIBC_PREREQ(2, 3)#    if !define __builtin_expect#        define __builtin_expect(x, expected_value) (x)#    endif#endif#if !defined(likely)#define likely(x) (__builtin_expect(!!(x), 1))#endif#if !defined(unlikely)#define unlikely(x) (__builtin_expect(!!(x), 0))#endif

2) CPU Cache預(yù)取

Cache Miss的代價非常高,回內(nèi)存讀需要65納秒,可以將即將訪問的數(shù)據(jù)主動推送的CPU Cache進行優(yōu)化。比較典型的場景是鏈表的遍歷,鏈表的下一節(jié)點都是隨機內(nèi)存地址,所以CPU肯定是無法自動預(yù)加載的。但是我們在處理本節(jié)點時,可以通過CPU指令將下一個節(jié)點推送到Cache里。

API文檔:https://doc.dpdk.org/api/rte__prefetch_8h.html

static inline void rte_prefetch0(const volatile void *p){    asm volatile ("prefetcht0 %[p]" : : [p] "m" (*(const volatile char *)p));}
#if !defined(prefetch)#define prefetch(x) __builtin_prefetch(x)#endif

…等等

3) 內(nèi)存對齊

內(nèi)存對齊有2個好處:

l 避免結(jié)構(gòu)體成員跨Cache Line,需2次讀取才能合并到寄存器中,降低性能。結(jié)構(gòu)體成員需從大到小排序和以及強制對齊。參考《Data alignment: Straighten up and fly right》

#define __rte_packed __attribute__((__packed__))

l 多線程場景下寫產(chǎn)生False sharing,造成Cache Miss,結(jié)構(gòu)體按Cache Line對齊

#ifndef CACHE_LINE_SIZE#define CACHE_LINE_SIZE 64#endif#ifndef aligined#define aligined(a) __attribute__((__aligned__(a)))#endif

4) 常量優(yōu)化

常量相關(guān)的運算的編譯階段完成。比如C++11引入了constexp,比如可以使用GCC的__builtin_constant_p來判斷值是否常量,然后對常量進行編譯時得出結(jié)果。舉例網(wǎng)絡(luò)序主機序轉(zhuǎn)換

#define rte_bswap32(x) ((uint32_t)(__builtin_constant_p(x) ?        \                   rte_constant_bswap32(x) :        \                   rte_arch_bswap32(x)))

其中rte_constant_bswap32的實現(xiàn)

#define RTE_STATIC_BSWAP32(v) \    ((((uint32_t)(v) & UINT32_C(0x000000ff)) << 24) | \     (((uint32_t)(v) & UINT32_C(0x0000ff00)) <<  8) | \     (((uint32_t)(v) & UINT32_C(0x00ff0000)) >>  8) | \     (((uint32_t)(v) & UINT32_C(0xff000000)) >> 24))

5)使用CPU指令

現(xiàn)代CPU提供很多指令可直接完成常見功能,比如大小端轉(zhuǎn)換,x86有bswap指令直接支持了。

static inline uint64_t rte_arch_bswap64(uint64_t _x){    register uint64_t x = _x;    asm volatile ("bswap %[x]"              : [x] "+r" (x)              );    return x;}

這個實現(xiàn),也是GLIBC的實現(xiàn),先常量優(yōu)化、CPU指令優(yōu)化、最后才用裸代碼實現(xiàn)。畢竟都是頂端程序員,對語言、編譯器,對實現(xiàn)的追求不一樣,所以造輪子前一定要先了解好輪子。

Google開源的cpu_features可以獲取當前CPU支持什么特性,從而對特定CPU進行執(zhí)行優(yōu)化。高性能編程永無止境,對硬件、內(nèi)核、編譯器、開發(fā)語言的理解要深入且與時俱進。

七、DPDK生態(tài)

對我們互聯(lián)網(wǎng)后臺開發(fā)來說DPDK框架本身提供的能力還是比較裸的,比如要使用DPDK就必須實現(xiàn)ARP、IP層這些基礎(chǔ)功能,有一定上手難度。如果要更高層的業(yè)務(wù)使用,還需要用戶態(tài)的傳輸協(xié)議支持。不建議直接使用DPDK。

目前生態(tài)完善,社區(qū)強大(一線大廠支持)的應(yīng)用層開發(fā)項目是FD.io(The Fast Data Project),有思科開源支持的VPP,比較完善的協(xié)議支持,ARP、VLAN、Multipath、IPv4/v6、MPLS等。用戶態(tài)傳輸協(xié)議UDP/TCP有TLDK。從項目定位到社區(qū)支持力度算比較靠譜的框架。

騰訊云開源的F-Stack也值得關(guān)注一下,開發(fā)更簡單,直接提供了POSIX接口。

Seastar也很強大和靈活,內(nèi)核態(tài)和DPDK都隨意切換,也有自己的傳輸協(xié)議Seastar Native TCP/IP Stack支持,但是目前還未看到有大型項目在使用Seastar,可能需要填的坑比較多。

我們GBN Gateway項目需要支持L3/IP層接入做Wan網(wǎng)關(guān),單機20GE,基于DPDK開發(fā)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • Linux
    +關(guān)注

    關(guān)注

    87

    文章

    11345

    瀏覽量

    210406

原文標題:絕對干貨!初學者也能看懂的DPDK解析

文章出處:【微信號:LinuxDev,微信公眾號:Linux閱碼場】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    EE-269:以太網(wǎng)802.3初學者指南

    電子發(fā)燒友網(wǎng)站提供《EE-269:以太網(wǎng)802.3初學者指南.pdf》資料免費下載
    發(fā)表于 01-05 09:48 ?0次下載
    EE-269:以太網(wǎng)802.3<b class='flag-5'>初學者</b>指南

    XD08M3232紅外感應(yīng)單片機開發(fā)板適合初學者嗎?

    XD08M3232是一款國產(chǎn)8位高性能Flash的接近感應(yīng)單片機,具有較大的內(nèi)存、恒流驅(qū)動電路、內(nèi)置運算放大器和模擬比較器等特點。對于初學者來說,選擇合適的開發(fā)板是非常重要的,因為它將直接影響
    發(fā)表于 12-07 14:55

    運行tas5086gui軟件后要實現(xiàn)低音要加載cfg文件嗎?

    請問運行tas5086gui軟件后要實現(xiàn)低音 要加載cfg文件嗎?能告訴我步驟嗎 ?pdf文件不怎么能看懂。謝謝了!!
    發(fā)表于 11-06 06:43

    初學STM32的常見誤區(qū)與解決方法

    對于初學者來說,STM32是一種功能強大但也相對復雜的微控制器平臺。許多人在學習了幾天后,常常會感到困惑和迷茫。這種情況并不罕見,尤其是在缺乏扎實基礎(chǔ)的情況下直接接觸這樣復雜的芯片。這篇文章旨在
    的頭像 發(fā)表于 09-05 08:00 ?684次閱讀
    <b class='flag-5'>初學</b>STM32的常見誤區(qū)與解決方法

    我用的是multisim14.0,因為是初學者,仿真電路的時候找不到合適的模型,應(yīng)該怎么辦?

    我用的是multisim14.0,因為是初學者,仿真電路的時候找不到合適的模型,應(yīng)該怎么辦? 比如我電路用的是AO3400的NMOS,但是在multisim14.0軟件自帶的元件庫里面沒找到類似的,開啟電壓是1.5v的nmos,請教大家,應(yīng)該怎么辦?
    發(fā)表于 08-23 10:59

    適合初學者的嵌入式項目有哪些?

    適合初學者的嵌入式項目有哪些? 嵌入式學習是一個實踐性很強的領(lǐng)域,通過實際項目可以幫助你鞏固理論知識并提升技能。以下是幾個適合初學者練手的嵌入式項目,每個項目都涵蓋了從硬件到軟件的不同層面
    發(fā)表于 07-11 10:23

    初學者必看:破解PCB設(shè)計常見錯誤!

    在新手開始PCB設(shè)計時,通常將該過程視為簡單的“連接點”:只要建立了連接,如何建立這些連接并不是特別重要。不幸的是,這與事實相去甚遠。作為PCB設(shè)計工程師,尤其是隨著電子設(shè)備速度的不斷提高和排放標準的嚴格,我們需要關(guān)注PCB和互連的最復雜的細節(jié)。如果我們粗心大意,我們就有可能面臨信號完整性差和電磁兼容性差的風險。在過去的幾年里,我們遇到了相當多的其他PCB設(shè)
    的頭像 發(fā)表于 06-21 18:22 ?1649次閱讀
    <b class='flag-5'>初學者</b>必看:破解PCB設(shè)計常見錯誤!

    硬件工程師只要會照著芯片規(guī)格書畫外圍電路就夠了嗎?高級硬件工程師多了這項技能

    我們要關(guān)注的是芯片內(nèi)部的電路拓撲,要想達到高級硬件工程師必須能看懂芯片內(nèi)部的電路拓撲,在規(guī)格書中叫做BLOCK DIAGRAM。 今天就介紹兩種穩(wěn)壓IC的內(nèi)部電路拓撲。
    的頭像 發(fā)表于 05-11 08:46 ?1900次閱讀
    硬件工程師只要會照著芯片規(guī)格書畫外圍電路就夠了嗎?高級硬件工程師多了這項技能

    基于STM32的智能循跡小車

    初學者的智能小車
    的頭像 發(fā)表于 05-08 14:43 ?4089次閱讀
    基于STM32的智能循跡小車

    國內(nèi)哪家的FPGA適合初學者

    如題,想著手學習FPGA的話,國內(nèi)哪家的比較好,更適合初學者學習?這方面的經(jīng)驗,是一點都沒。
    發(fā)表于 04-14 19:17

    CubeAI-7.0.0生成的C語言代碼,神經(jīng)網(wǎng)絡(luò)運行函數(shù)是哪個,輸入輸出分別是哪個變量啊?

    CubeAI-7.0.0生成的C語言代碼,神經(jīng)網(wǎng)絡(luò)運行函數(shù)是哪個,輸入輸出分別是哪個變量啊?求教大佬,之前5.1.2還能看懂,現(xiàn)在7.0.0看不懂了。
    發(fā)表于 04-01 07:30

    FPGA芯片的工作原理和使用

    FPGA(現(xiàn)場可編程門陣列)芯片的使用和工作原理對于初學者來說,可能是一個相對復雜但非常有趣的學習領(lǐng)域。
    的頭像 發(fā)表于 03-27 14:59 ?1117次閱讀

    微軟4月1日推出生成式AI安全產(chǎn)品“Securit Copilot”

    腳本反編程:自動解碼惡意軟件,實現(xiàn)無須手工逆向工程,讓每位分析師都能看懂入侵者的操作;分析復雜命令行腳本,實現(xiàn)自然語言解釋,找到相關(guān)實體并關(guān)聯(lián);
    的頭像 發(fā)表于 03-14 10:28 ?545次閱讀

    初學者請問各位大佬

    為什么在89C51單片機中R1可以提供低地址 在外部擴展RAM中不是P0口提供低8位地址P2口提供高8位地址嗎初學者有些不理解望各位大佬解答一下謝謝
    發(fā)表于 02-23 16:39

    程序中的R地址都是什么意思?怎么樣才能看懂

    程序中的R地址都是什么意思?怎么樣才能看懂? 在程序中,R地址通常指的是寄存器地址,它是用來存儲和訪問計算機中的數(shù)據(jù)的硬件部件。寄存器是計算機中最快的內(nèi)存形式,它位于中央處理器(CPU)內(nèi)部或與
    的頭像 發(fā)表于 02-18 10:49 ?1216次閱讀
    百家乐平注常赢规则| 百家乐官网娱乐城棋牌| 百家乐官网孖宝揽| 威尼斯人娱乐场28| 百家乐官网游戏网上投注| 金界百家乐的玩法技巧和规则| 川宜百家乐官网破解版| 百家乐电子路单谁| 百家乐官网游戏玩法规则| 德晋百家乐的玩法技巧和规则| 真人百家乐官网导航| 广发百家乐的玩法技巧和规则| 最好的百家乐官网好评平台都有哪些 | 百家乐官网出千方法技巧| 大发888娱乐城健账号| 百家乐官网博彩平| 大发888下载df888| 百家乐假在哪里| 明升m88娱乐城| 澳门百家乐大家乐眼| 百家乐官网现场网络| 金银岛百家乐的玩法技巧和规则 | 百家乐五湖四海娱乐场| 百家乐官网娱乐城游戏| 新世纪百家乐的玩法技巧和规则| 网上百家乐官网真的假的| 百家乐什么方法容易赢| 百家乐官网博百家乐官网| 88娱乐城官方网站| 百家乐赌博牌路分析| 百家乐官网庄89| 棋牌论坛| 做百家乐网上投注| 哪个百家乐官网技巧平台信誉好 | 摩纳哥百家乐的玩法技巧和规则| 百家乐官网998| 娱乐城送白菜| 百家乐永利娱乐平台| 百家乐官网娱乐网77scs| 皇冠网络刷qb软件| 澳门赌百家乐的玩法技巧和规则 |