吴忠躺衫网络科技有限公司

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

關(guān)于深度學(xué)習(xí)在各個(gè)領(lǐng)域的應(yīng)用分析

MATLAB ? 來(lái)源:djl ? 2019-09-12 08:56 ? 次閱讀

深度學(xué)習(xí)網(wǎng)絡(luò)作為一個(gè)功能多樣的工具,雖然最初僅用于圖像分析,但它已逐漸被應(yīng)用到各種不同的任務(wù)和領(lǐng)域中。高準(zhǔn)確性和高處理速度,使得用戶(hù)無(wú)需成為領(lǐng)域?qū)<壹纯蓪?duì)大型數(shù)據(jù)集執(zhí)行復(fù)雜分析。

小編邀請(qǐng) MathWorks 產(chǎn)品經(jīng)理 Johanna 分享一些深度學(xué)習(xí)網(wǎng)絡(luò)的使用示例以供參考:

文本分析

在本例中,我們將分析推特?cái)?shù)據(jù),了解針對(duì)特定詞或短語(yǔ)的情感是積極的還是消極的。情感分析有很多實(shí)際的應(yīng)用,如品牌推廣、競(jìng)選活動(dòng)和廣告營(yíng)銷(xiāo)。

過(guò)去(目前仍然)進(jìn)行情感分析通常使用機(jī)器學(xué)習(xí)。機(jī)器學(xué)習(xí)模型可分析單個(gè)詞,但深度學(xué)習(xí)網(wǎng)絡(luò)可應(yīng)用于完整的句子,大大地提高了準(zhǔn)確性。

訓(xùn)練組由數(shù)以千計(jì)正面或負(fù)面的推特樣本組成。這里是訓(xùn)練示例:

關(guān)于深度學(xué)習(xí)在各個(gè)領(lǐng)域的應(yīng)用分析

我們通過(guò)去除“the”和“and”等“停滯詞”對(duì)數(shù)據(jù)進(jìn)行了清理,這些詞對(duì)于算法的學(xué)習(xí)毫無(wú)用處。然后,我們上傳了長(zhǎng)短期記憶(longshort-term memory, LSTM)網(wǎng)絡(luò),它是一種遞歸神經(jīng)網(wǎng)絡(luò)(recurrent neural network, RNN),可學(xué)習(xí)時(shí)間上的依賴(lài)關(guān)系。

LSTM 擅長(zhǎng)對(duì)序列和時(shí)序數(shù)據(jù)進(jìn)行分類(lèi)。當(dāng)分析文本時(shí),LSTM 不僅會(huì)考慮單個(gè)詞,還會(huì)考慮句子結(jié)構(gòu)和詞的組合。

網(wǎng)絡(luò)本身的 MATLAB 代碼非常簡(jiǎn)單:

layers = [ sequenceInputLayer(inputSize)

lstmLayer(outputSize,'OutputMode','last')

fullyConnectedLayer(numClasses)

softmaxLayer

classificationLayer ]

GPU 上運(yùn)行時(shí),它訓(xùn)練的非常快速,30 次迭代(完整遍歷一次所有數(shù)據(jù))只需 6 分鐘。

完成對(duì)模型的訓(xùn)練后,我們就可對(duì)新數(shù)據(jù)使用該模型。例如:我們可用它確定情感分?jǐn)?shù)與股票價(jià)格之間是否相關(guān)。

語(yǔ)音識(shí)別

在本例中,我們需要將語(yǔ)音音頻文件分類(lèi)到其對(duì)應(yīng)的詞類(lèi)。初看上去,此問(wèn)題與圖像分類(lèi)完全不同,但實(shí)則非常相似。頻譜是 1D 音頻文件中信號(hào)的二維顯示(圖 1)。我們可以將其用作對(duì)卷積神經(jīng)網(wǎng)絡(luò)(CNN)的輸入,如同使用“真實(shí)”圖像一樣。

關(guān)于深度學(xué)習(xí)在各個(gè)領(lǐng)域的應(yīng)用分析

圖1. 上部:原始音頻信號(hào)。底部:對(duì)應(yīng)頻譜。

spectrogram() 函數(shù)是一種將音頻文件轉(zhuǎn)換為其對(duì)應(yīng)時(shí)頻的簡(jiǎn)單方式。但是,語(yǔ)音是音頻處理的一種特定形式,其中重要特征會(huì)包含在特定的頻率處。由于我們希望 CNN 專(zhuān)注于這些特定的頻率處,我們將使用美爾倒譜系數(shù),該系數(shù)會(huì)鎖定跟語(yǔ)音最相關(guān)的頻率區(qū)域。

我們?cè)谙M诸?lèi)的詞類(lèi)之間均勻地分配訓(xùn)練數(shù)據(jù)。

為減少偽正面情感,我們納入了容易與目標(biāo)類(lèi)別混淆的詞類(lèi)。例如,如果目標(biāo)詞是“on”,則“mom”、“dawn”和“won”等詞會(huì)放到“未知”類(lèi)別中。網(wǎng)絡(luò)不需要知道這些詞是什么,只需要知道它們不是目標(biāo)詞。

我們隨后定義了一個(gè) CNN。由于我們使用頻譜作為輸入值,因此 CNN 的結(jié)構(gòu)可以是類(lèi)似于用于圖像的結(jié)構(gòu)。

模型訓(xùn)練完畢后,它會(huì)將輸入圖像(頻譜圖)分類(lèi)到相應(yīng)的類(lèi)別(圖2)。驗(yàn)證集的準(zhǔn)確性約為96%。

關(guān)于深度學(xué)習(xí)在各個(gè)領(lǐng)域的應(yīng)用分析

圖2. 詞“yes”的分類(lèi)結(jié)果。

圖像降噪

小波和濾波器是(仍然是)降噪的常見(jiàn)方法。在本例中,我們將了解到經(jīng)過(guò)預(yù)訓(xùn)練的圖像降噪 CNN(DnCNN) 將如何應(yīng)用于包含高斯噪聲的一組圖像中(圖 3)。

圖3. 添加了高斯噪聲的原始圖像。

我們首先下載一個(gè)包含高斯噪聲的圖像。

imshow(noisyRGB);

由于這是彩色圖像,但網(wǎng)絡(luò)是在灰階圖像上受訓(xùn)的,因此該過(guò)程的唯一難點(diǎn)是需要將圖像分為三個(gè)不同通道:紅(R)、綠(G)、藍(lán)(B)。

oisyR = noisyRGB(:,:,1);

noisyG = noisyRGB(:,:,2);

noisyB = noisyRGB(:,:,3);

加載預(yù)先訓(xùn)練的 DnCNN 網(wǎng)絡(luò):

net= denoisingNetwork('dncnn');

現(xiàn)在我們可以使用它去除每個(gè)顏色通道中的噪聲。

denoisedR = denoiseImage(noisyR,net);

denoisedG = denoiseImage(noisyG,net);

denoisedB =denoiseImage(noisyB,net);

重新組合經(jīng)過(guò)降噪處理的顏色通道,形成降噪后的 RGB 圖像。

denoisedRGB =cat(3,denoisedR,denoisedG,denoisedB);

imshow(denoisedRGB)

title('Denoised Image')

原始(非噪聲)圖像與降噪圖像的快速視覺(jué)對(duì)比圖說(shuō)明結(jié)果是合理的(圖 4)。

圖4. 左:原始(非噪音)圖像。右:已降噪圖像。

讓我們放大幾個(gè)細(xì)節(jié):

rect = [120 440 130 130];

cropped_orig = imcrop(RGB,rect);

cropped_denoise = imcrop(denoisedRGB,rect);

imshowpair(cropped_orig,cropped_denoise,'montage');

圖 5 中的放大視圖顯示降噪結(jié)果造成了一些負(fù)面影響。顯而易見(jiàn),原始(非噪聲)圖像具有更高的清晰度,尤其是屋頂和草地。這一結(jié)果可能是可接受的,或者圖像需要進(jìn)一步處理,這取決于它將用于哪些應(yīng)用。

圖5. 放大視圖。

如果考慮使用 DnCNN 進(jìn)行圖像降噪,請(qǐng)記住,它只能識(shí)別其接受過(guò)訓(xùn)練的噪聲類(lèi)型,在本例中是高斯噪聲。為提高靈活性,您可以使用 MATLAB 和 Deep Learning Toolbox 通過(guò)預(yù)定義層訓(xùn)練自己的網(wǎng)絡(luò),也可以訓(xùn)練完全自定義的降噪神經(jīng)網(wǎng)絡(luò)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 噪聲
    +關(guān)注

    關(guān)注

    13

    文章

    1126

    瀏覽量

    47517
  • 音頻
    +關(guān)注

    關(guān)注

    29

    文章

    2903

    瀏覽量

    81957
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5516

    瀏覽量

    121559
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    NPU深度學(xué)習(xí)中的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其核心驅(qū)動(dòng)力之一,已經(jīng)眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價(jià)值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡(luò)處理單元)是專(zhuān)門(mén)為
    的頭像 發(fā)表于 11-14 15:17 ?895次閱讀

    GPU深度學(xué)習(xí)應(yīng)用案例

    GPU深度學(xué)習(xí)中的應(yīng)用廣泛且重要,以下是一些GPU深度學(xué)習(xí)應(yīng)用案例: 一、圖像識(shí)別 圖像識(shí)別是深度
    的頭像 發(fā)表于 10-27 11:13 ?511次閱讀

    激光雷達(dá)技術(shù)的基于深度學(xué)習(xí)的進(jìn)步

    信息。這使得激光雷達(dá)自動(dòng)駕駛、無(wú)人機(jī)、機(jī)器人等領(lǐng)域具有廣泛的應(yīng)用前景。 二、深度學(xué)習(xí)技術(shù)的發(fā)展 深度學(xué)
    的頭像 發(fā)表于 10-27 10:57 ?511次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    。FPGA的優(yōu)勢(shì)就是可編程可配置,邏輯資源多,功耗低,而且賽靈思等都在極力推廣。不知道用FPGA做深度學(xué)習(xí)未來(lái)會(huì)怎樣發(fā)展,能走多遠(yuǎn),你怎么看。 A:FPGA 深度
    發(fā)表于 09-27 20:53

    深度學(xué)習(xí)算法嵌入式平臺(tái)上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法各個(gè)領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源
    的頭像 發(fā)表于 07-15 10:03 ?1702次閱讀

    深度學(xué)習(xí)中的時(shí)間序列分類(lèi)方法

    時(shí)間序列分類(lèi)(Time Series Classification, TSC)是機(jī)器學(xué)習(xí)深度學(xué)習(xí)領(lǐng)域的重要任務(wù)之一,廣泛應(yīng)用于人體活動(dòng)識(shí)別、系統(tǒng)監(jiān)測(cè)、金融預(yù)測(cè)、醫(yī)療診斷等多個(gè)
    的頭像 發(fā)表于 07-09 15:54 ?1170次閱讀

    深度學(xué)習(xí)中的無(wú)監(jiān)督學(xué)習(xí)方法綜述

    深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)領(lǐng)域的一個(gè)重要分支,近年來(lái)多個(gè)領(lǐng)域取得了顯著的成果,特別是
    的頭像 發(fā)表于 07-09 10:50 ?953次閱讀

    深度學(xué)習(xí)視覺(jué)檢測(cè)中的應(yīng)用

    能力,還使得機(jī)器能夠模仿人類(lèi)的某些智能行為,如識(shí)別文字、圖像和聲音等。深度學(xué)習(xí)的引入,極大地推動(dòng)了人工智能技術(shù)的發(fā)展,特別是圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等領(lǐng)域取得了顯著成果。
    的頭像 發(fā)表于 07-08 10:27 ?881次閱讀

    人工智能深度學(xué)習(xí)的五大模型及其應(yīng)用領(lǐng)域

    隨著科技的飛速發(fā)展,人工智能(AI)技術(shù)特別是深度學(xué)習(xí)各個(gè)領(lǐng)域展現(xiàn)出了強(qiáng)大的潛力和廣泛的應(yīng)用價(jià)值。深度
    的頭像 發(fā)表于 07-03 18:20 ?4953次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    人工智能的浪潮中,機(jī)器學(xué)習(xí)深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管
    的頭像 發(fā)表于 07-01 11:40 ?1541次閱讀

    深度學(xué)習(xí)計(jì)算機(jī)視覺(jué)領(lǐng)域的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其中的核心技術(shù)之一,已經(jīng)計(jì)算機(jī)視覺(jué)領(lǐng)域取得了顯著的成果。計(jì)算機(jī)視覺(jué),作為計(jì)算機(jī)科學(xué)的一個(gè)重要分支,旨在讓計(jì)算機(jī)能夠像人類(lèi)一樣理解和解析圖像和視
    的頭像 發(fā)表于 07-01 11:38 ?987次閱讀

    深度解析深度學(xué)習(xí)下的語(yǔ)義SLAM

    隨著深度學(xué)習(xí)技術(shù)的興起,計(jì)算機(jī)視覺(jué)的許多傳統(tǒng)領(lǐng)域都取得了突破性進(jìn)展,例如目標(biāo)的檢測(cè)、識(shí)別和分類(lèi)等領(lǐng)域。近年來(lái),研究人員開(kāi)始視覺(jué)SLAM算法
    發(fā)表于 04-23 17:18 ?1381次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>下的語(yǔ)義SLAM

    Aigtek高精度電壓源的作用及其各個(gè)領(lǐng)域的應(yīng)用

    高精度電壓源是一種用于提供穩(wěn)定、精確電壓輸出的重要電子設(shè)備。它在各種科學(xué)研究、工程應(yīng)用和實(shí)驗(yàn)室測(cè)試中發(fā)揮著至關(guān)重要的作用。下面將詳細(xì)介紹高精度電壓源的作用及其各個(gè)領(lǐng)域的應(yīng)用。 一、高精度電壓源
    的頭像 發(fā)表于 03-26 11:46 ?694次閱讀
    Aigtek高精度電壓源的作用及其<b class='flag-5'>在</b><b class='flag-5'>各個(gè)領(lǐng)域</b>的應(yīng)用

    FPGA深度學(xué)習(xí)應(yīng)用中或?qū)⑷〈鶪PU

    上漲,因?yàn)槭聦?shí)表明,它們的 GPU 訓(xùn)練和運(yùn)行 深度學(xué)習(xí)模型 方面效果明顯。實(shí)際上,英偉達(dá)也已經(jīng)對(duì)自己的業(yè)務(wù)進(jìn)行了轉(zhuǎn)型,之前它是一家純粹做 GPU 和游戲的公司,現(xiàn)在除了作為一家云 GPU 服務(wù)
    發(fā)表于 03-21 15:19

    高清視頻編碼器各個(gè)領(lǐng)域的應(yīng)用案例分享

    高清視頻編碼器各個(gè)領(lǐng)域都有廣泛的應(yīng)用,下面將分享一些具體的應(yīng)用案例: 來(lái)百度APP暢享高清圖片 1. 視頻會(huì)議 應(yīng)用案例 :一家跨國(guó)公司全球范圍內(nèi)進(jìn)行日常的視頻會(huì)議。通過(guò)使用高清視頻編碼器
    的頭像 發(fā)表于 02-20 15:13 ?595次閱讀
    高清視頻編碼器<b class='flag-5'>在</b><b class='flag-5'>各個(gè)領(lǐng)域</b>的應(yīng)用案例分享
    大发888送钱58元| 做生意门朝东好吗| tt线上娱乐| 明升百家乐娱乐城| 百家乐官网技巧公司| 明升国际娱乐 | 蓝盾百家乐具体玩法| 游戏机百家乐官网的玩法技巧和规则 | 百家乐国际赌场娱乐网规则| 任你博百家乐官网的玩法技巧和规则 | 百家乐官网园是真的不| 宜春市| 太阳城娱乐网可信吗| 永利高百家乐现金网| 百家乐官网路单之我见| 元游棋牌游戏| 多伦多百家乐的玩法技巧和规则 | 大发888游戏平台hg dafa888 gw| 百家乐娱乐城足球盘网| 百家乐官网正品地址| 金濠国际| 水果机遥控器多少钱| 豪华百家乐人桌| 状元百家乐官网的玩法技巧和规则| 百家乐官网连闲几率| 大发888娱乐城备用网址| 缅甸百家乐赌场娱乐网规则| 百家乐视频双扣| 百家乐官网对子的玩法| 百家乐官网算号软件| bet365资讯网| 新全讯网carrui| 百家乐破解仪恒达| 风水24山图解| 玩百家乐官网出千方法| 百家乐官网大小是什么| bet365娱乐场注册| 威尼斯人娱乐城在线赌博| 百家乐出千手法| 天地人百家乐现金网| 百家乐官网平玩法可以吗|