基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)預(yù)測(cè)算法
推薦 + 挑錯(cuò) + 收藏(0) + 用戶評(píng)論(0)
蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè)是結(jié)構(gòu)生物學(xué)中的一個(gè)重要問(wèn)題。針對(duì)八類蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè),提出了一種基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)預(yù)測(cè)算法。該算法通過(guò)雙向遞歸神經(jīng)網(wǎng)絡(luò)建模氨基酸間的局部和長(zhǎng)程相互作用,遞歸神經(jīng)網(wǎng)絡(luò)的隱層輸出進(jìn)一步送入到三層的前饋神經(jīng)網(wǎng)絡(luò)以便進(jìn)行八類蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè)。實(shí)驗(yàn)結(jié)果表明,提出的算法在CB513數(shù)據(jù)集上達(dá)到了67.9%的Q8預(yù)測(cè)精度,顯著地優(yōu)于SSpr08和SC-CSN。
?
非常好我支持^.^
(0) 0%
不好我反對(duì)
(0) 0%
下載地址
基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)預(yù)測(cè)算法下載
相關(guān)電子資料下載
- 神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)模型的構(gòu)建方法 109
- CNN的定義和優(yōu)勢(shì) 112
- 基于CNN的網(wǎng)絡(luò)入侵檢測(cè)系統(tǒng)設(shè)計(jì) 105
- 數(shù)據(jù)分析有哪些分析方法 82
- 數(shù)據(jù)分析與數(shù)據(jù)挖掘的區(qū)別 55
- rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò) 163
- rnn是什么神經(jīng)網(wǎng)絡(luò)模型 162
- rnn是什么神經(jīng)網(wǎng)絡(luò) 174
- 深度學(xué)習(xí)與nlp的區(qū)別在哪 166
- tensorflow和pytorch哪個(gè)更簡(jiǎn)單? 72