和傳統的傳感器相比,微型傳感器具有許多新特性,它們能夠彌補傳統傳感器的不足,具有廣泛的應用前景,越來越受到重視。文中詳細介紹了一些微型傳感器件的結構和原理,說明了微型傳感器的基本性能特點和微型傳感器的發展趨勢。
微型傳感器的特點
傳統的傳感器件因其制作工藝與半導體IC 工藝不兼容,所以無論在性能、尺寸和成本上都不能與通過IC 技術制作的高速度、高密度、小體積和低成本的信號處理器件相適應,于是制約了整個系統的集成化、批量化和性能的充分發揮。
微型傳感器不是傳統傳感器簡單的物理縮小的產物,而是以新的工作機制和物化效應,使用標準半導體工藝兼容的材料,通過MEMS 加工技術制備的新一代傳感器件,具有小型化、集成化的特點,可以極大地提高傳感器性能。在信號傳輸前就可放大信號,從而減少干擾和傳輸噪音,提高信噪比;在芯片上集成反饋線路和補償線路,可改善輸出的線性度和頻響特性,降低誤差,提高靈敏度。
具有陣列性??梢栽谝粔K芯片上集成敏感元件、放大電路和補償線路。可以把多個相同的敏感元件集成在同一芯片上;具有良好的兼容性,便于與微電子器件集成與封裝。
利用成熟的硅微半導體工藝加工制造,可以批量生產,成本非常低廉。
典型的微型傳感器
微機械加速度傳感器
它是最早利用MEMS 技術開發成功,并取得廣泛應用的微型傳感器之一。微加速度傳感器的主要工作方式有壓阻式、電容式、力平衡式和諧振式,現在又出現了微機械熱對流式加速度傳感器。
圖1 和圖2 分別給出了新型加速度傳感器作用原理和結構示意圖。在懸臂梁的端部有一擴散加熱電阻,加熱電阻通電后所產生的熱量全部沿梁和上下兩個散熱板傳遞。向上下兩個散熱板傳導熱量的速率取決于加熱電阻與散熱板間的距離,沿懸臂梁的溫度分布曲線由懸臂梁與散熱板間的相對位置來確定??梢酝ㄟ^分布在懸臂梁上的P 型硅/ 鋁熱電偶對懸臂梁溫度的測量來測定懸臂梁與兩個散熱板的相對位置,從而實現對加速度的測量。
這種傳感器的熱電偶具有很高的靈敏度,能夠直接輸出電壓信號,可以省去復雜的信號處理電路,并且對電磁干擾不敏感。在懸臂梁與散熱板的間距為140μm 和200μm、梁長為100μm、梁寬為4μm、梁厚為10μm 時,傳感器的靈敏度為1 mV/ g ,測量范圍為25g ,分辨率為0.003 g. 由于結構中沒有大的質量塊,微機械熱對流式加速度傳感器具有很強的抗沖擊能力,但其頻率響應范圍很窄 。
微機械角速度傳感器
對于旋轉角速度和旋轉角度的檢測,需要采用陀螺儀?;贛EMS 技術的微機械陀螺因其成本低,能批量生產,可廣泛應用于汽車牽引控制系統、醫用設備、軍事設備等方面。微機械陀螺有雙平衡環結構、懸臂梁結構、音叉結構等,其工作原理基于哥氏效應。
諧振式微機械陀螺的結構如圖3 所示:它由固定在基底上的靜止驅動器、質量塊(包括內部動齒框架及外部框架) 和2個雙端音叉諧振器(DETF) 組成。質量塊通過4 個支承梁固定在基底上。當在靜止驅動器上加上驅動電壓(角頻率為ωp)時,質量塊的內部動齒框架作沿著y 軸方向的振蕩運動。如果一個外部的繞z 軸的轉動(輸入信號Ω) 作用到芯片上,質量塊產生沿x 軸方向的哥氏力,且通過內支承梁轉移到外框架上, 外框架由兩對支承梁固定并可沿x 軸方向運動,通過兩對杠桿這個力被放大并傳遞到外框架兩邊的兩個雙端音叉諧振器(DETF) 上。DETF 上輸出信號頻率的變化就反映了輸入角速率的變化。
微機械陀螺的平面外輪廓的結構參數為1mm2 ,厚度僅為2μm. 而文獻給出的振動輪式硅微機械陀螺的直徑為1 mm ,厚度為19μm ,寬度為5μm ,電極間距為7μm.
微型氣敏傳感器
微型氣敏傳感器可分為硅基氣敏傳感器和硅微氣敏傳感器。前者是以硅為襯底,敏感層為非硅材料,是當前微氣敏傳感器的主流。氣敏傳感器的敏感性能與工作溫度有很大關系,要求傳感器系統本身具備加熱元件和溫度探測元件。而基于MEMS 技術的微型氣體傳感器具有高度集成化的特點,易于將氣敏元件和溫度探測元件集成一體,保證了氣敏傳感器性能。
圖4 是一種體積僅為1 cm2 的二氧化碳氣體傳感器結構示意圖。該氣體傳感器的工作機理是基于非散射的紅外雙光束、雙波長的測量原理 。它的結構包括一個常規的小型紅外光源、一個氣室和一個紅外探測單元。紅外探測單元由兩個單晶硅微型熱輻射儀、一個寬帶濾波器和一個微型可變紅外濾光片構成,參考信號源可以補償由于光源污染產生的測量信號衰減帶來的影響。在二氧化碳體積分數2000 &TImes;10 - 6的樣氣中,該傳感器具有20 &TImes;10 - 6的分辨力(1σ) ,時間常數為3 s.
評論