D功放是基于脈沖寬度調制技術的開關放大器,包括脈沖寬度調制器(幾百千赫茲開關頻率),功率橋電路,低通濾波器。本文從構成、拓撲結構對比、MOSFET的選擇與功率損耗、失真和噪音產生、音頻性能等D類音頻功率放大器設計有關的基礎問題作分析,并例舉D類功率放大器參考設計。
1、 D類功放基本構成
目前有很多種不同種類的功放,如:A類、B類、AB類等。但D類功放與其不同的是基本是一個開關功放或者是脈寬調制功放。為此,主要將對說明這類D類功放作以說明。
在這種D類功放中,器件要么完全導通,要么完全關閉,大幅度減少了輸出器件的功耗,效率達90-95%都是可能的。音頻信號是用來調制PWM載波信號,其載波信號可以驅動輸出器件,用最后的低通濾波器去除高頻PWM載波頻率。
眾所周知, A類、B類和AB類功放均是線形功放,那么D類功放與它們究竟有什么不同?我們首先應作討論。圖1是D功放原理框圖,在一個線性功放中信號總是停留在模擬區,輸出晶體管(器件)擔當線性調整器來調整輸出電壓。這樣在輸出器件上存在著電壓降,其結果降低了效率。
而D類功放采用了很多種不同的形式,一些是數字輸入,還有一些是模擬輸入,在這里我們將集中討論一下模擬輸入。
上面圖1顯示的是半橋D類功放的基本功能圖,其中給出了每級的波形。電路運用從半橋輸出的反饋來補償母線電壓的變化。那末D類功放是如何工作的呢?D類功放的工作原理和PWM的電源是相同的,我們假設輸入信號是一個標準的音頻信號,而這個音頻信號是正弦波,典型頻率從20Hz到20kHz范圍。這個信號和高頻三角或鋸齒波形相比可以產生PWM信號,見圖2a中所示。這個PWM信號被用來驅動功率級,產生放大的數字信號,最后一個低通過濾波器被用在這個信號上來濾掉PWM載波頻率,重新得到正弦波音頻信號,見圖2b中所示。
2、 從拓撲結構對比-看線性和D類不同
值此將討論線性功放(A類和AB類)和D類數字功放的不同之處。這兩者之間主要的不同是效率,這也是為什么要發明D類功放的原因。線性功放就其性能而言具有固有的線性,但是即使是AB功放其效率也只有50%,而D類功放的效率很高,在實際的設計中達90%。
增益-線性功放增益不受母線電壓影響而變化,然而D類功放的增益是和母線電壓成比例的。這就意味著D類功放的電源抗擾比率是0dB,而線性的PSRR(電源供應抑制比率)就很好。在D類功放中普遍用反饋來補償母線電壓變化。
能量流向-在線性功放中,能量是從電源到負載,雖然在全橋D類功放中也是這樣,但半橋D類功放還是不同的,因為能量可以雙向流動而導致“母線電壓提升”現象產生,這樣會造成母線電容被從加載來的能量充電。這個主要發生在低頻上,如低于100Hz是這樣。
3、 D類功放與Buck降壓轉換器類拓撲差異
在D類功放和同步降壓轉換器拓撲原理作如圖3所示。這兩個電路之間的主要不同有三:其一、對于同步降壓轉換器,其基準電壓來自反饋電路的慢慢變化的穩定電壓;而D類功放的參考信號是一個不斷變化的音頻信號。也就是說,同步降壓轉換器的占空比是相對穩定的,而D類以圍繞50%占空比不斷地改變。其二、在同步降壓轉換器中負載電流的方向總是朝著負載,即電感電流為單向,見圖3左所示。但是在D類功放中電流是朝著兩個方向的,即電感電流為雙向,見圖3右所示。最后的不同是MOSFET的優化方式。同步降壓轉換器對于高低端的晶體管有著不同的優化,較長的周期需要較低的Rds(on),而較短的周期需要低的Qg(柵極電荷),即兩個開關作用不同。但D類功放對兩個MOSFET有著相同的優化方式。高低端器件有相同的Ras(on),即兩個開關作用相同。
4、 D類功放中MOSFET的選擇
在功放中要達到高性能的關鍵因素是功率橋電路中的開關。在開關過程中產生的功率損耗、死區時間和電壓、電流瞬時毛刺等都應該盡可能的最小化來改善功放的性能。因此,在這種功放中開關要做到低的電壓降,快速的開關時間和低雜散電感。
由于MOSFET開關速度很快,對于這種功放它是你最好的選擇。它是一個多數載流子器件,相對于IGBT和BJT它的開關時間比較快,因而在功放中有比較好的效率和線性度。而MOSFET的選擇是基于功放規格而定。因而在選擇器件以前要知道輸出功率和負載阻抗(如100W 8Ω),功率電路拓撲(如半橋梁或全橋),調制度(如89%—90%)。
5、 MOSFET中的功率損耗
功率開關中的損失在AB線性功放和D類功放之間是截然不同的。首先看一下在線性AB功放中的損耗,其損耗可以定義如下:
K是母線電壓與輸出電壓的比率。
對于線性功放功率器件損耗,可以簡化成下面的公式:
需要說明的是AB功放功率損耗與輸出器件參數無關。
現在一起看一下D類功放的損失,在輸出器件中的全部損耗如下:
Ptotal=Psw+Pcond+Pgd
Psw是開關損耗
Pcond是導通損耗,
Pgd是柵極驅動損耗
從上式可看于D類功放的輸出損耗是根據器件的參數來定的,即基于Qg(柵極電荷)、Rds(on)(靜態漏源通態電阻)、Coss(MOSFET的輸出電容)和tf(MOSFET下降時間),所以減少D類功放損耗應有效選擇器件,圖4是D類功放的功率損耗和K的函數關系。
6、 半橋和全橋結構拓撲的對比
和普通的AB類功放相似,D類功放可以歸類成兩種拓撲,分別是半橋和全橋結構。每種拓撲都各有利弊。簡而言之,半橋簡單,而全橋在音頻性能上更好一些,全橋拓撲需要兩個半橋功放,這樣就需要更多的元器件。盡管如此,橋拓撲的固有差分輸出結構可以消除諧波失真和直流偏置,就像在AB功放中一樣。一個全橋拓撲允許用更好的PWM調制方案,比如量化幾乎沒有錯誤的三水平PWM方案。
在半橋拓撲中,電源面臨從功放返回來的能量而導致嚴重的母線電壓波動,特別是當功放輸出低頻信號到負載時。能量回流到電源是D類功放的一個基本特性。在全橋中的一個臂傾向于消耗另一個臂的能量。所以就沒有可以回流的能量。
7、 不完美失真和噪音產生
一個理想的D類功放沒有失真,在可聽波段沒有噪音且效率足100%。然而,實際的D類功放并不完美并且會有失真和噪音。其不完美是由于D類功放產生的失真開關波形造成的。原因是:
*從調制器到開關級由于分辨率限制和時間抖動而導致的PWM信號中的非線性。
*加在柵極驅動上的時間誤差,如死區時間,開通關斷時間,上升下降時間。
*開關器件上的不必要特征,比如限定電阻,限定開關速度或體二極管特征。
*雜散參數導致過度邊緣的震蕩。
*由于限定的輸出電阻和通過直流母線的能量的反作用而引起得電源電壓波動
*輸出LPF中的非線性。
一般來講,在柵極信號中的開關時間誤差是導致非線性的主要原因。特別是死區時間嚴重影響了D類功放的線性。幾十納秒少量的死區時間很容易就產生1%以上的THD(總諧波失真),見圖5(c)所示。
8、 死區時間(見圖5(a)所示是如何影響非線性的)
其圖5(a)(b)(c)為死區時間(或稱延時時間)對失真的影響示意圖。D類輸出級中的工作模式可以根據輸出波形如何跟隨輸入時間可歸類成三個不同的區域。在這三個不同的工作區,輸出波形跟隨高低端輸入信號的不同邊緣而變化的。
讓我們檢查一下第一個操作區(見圖5c所示High side edges),在這里電流比電感器波紋電流還大時,輸出電流就從D類功放流向負載。高端器件在低端器件開通之前關斷,輸出節點就會被轉到負母線。這個過程與低端器件開通時間無關,它是通過從解調電感的換向電流自動造成的。因此輸出波形與嵌入到低端器件開通前的死區時間無關。因此PWM波形只被嵌入到高端柵極信號的死區短路了,而造成所希望的輸入占空比的輕微電壓增益降低。
有個相似的情況發生在負工作區(見圖5c所示Low side edges),輸出電流從加載流向D類功放。電流高于電感波紋電流。在這種情況下,輸出波形的時間并沒有受嵌入高端開通沿的死區時間的影響,而總是允許低端輸入時間。因此,PWM波形只被嵌入到低端器件柵極信號的死區時間短路。
在以前描述的兩個操作模式中存在一個區域,在這個區域中輸出時間與死區時間是獨立的。當輸出電流小于電感波紋電流時,輸出時間跟隨每個輸入的關斷沿。因為在這個區域,是ZVS(零電壓開關)操作狀態(見圖5c所示Falling edges),因此在中間區域就不會有失真。
當輸出電流隨著音頻輸入信號的不同而變化時,D類功放將改變它的操作區,這樣每個都會有細小的不同增益。在音頻信號的周期中的這三個不同區域增議會歪曲輸出波形。
圖5(b)顯示的是死區時間如何影響THD性能的。一個40nS死區時間可以產生2%的THD。這個可以通過減小死區時間到15nS提高到0.2%。這個標志著更好線性與高低端開關器件轉換過程的重要性。
9、 音頻性能測量
有著AESl7網絡過濾器的音頻測量儀器是很必需的。當然,像傳統音頻分析器HP8903B,加上合適的前級低通濾波器也可以使用。在這里需要重要考慮的是D類功放的輸出信號在其波形上仍然含有大量的開關載波頻率,這樣就造成錯誤的讀取。這些分析器也許很難防止D類功放的載波泄露。
10、防止直通
盡管如此,一個狹窄的死區時間在大量生產中是很危險的。因為一旦高低端晶體管被同時打開,那么直流母線的電壓就會被晶體管短路,大量的直通電流將開始流動,這便會導致器件損壞。我們應該注意到有效的死區時間對每個功放是不同的,與元件參數和芯片溫度有關。對于一個D類功放的可靠設計來講確保死區時間總是正的而決不是負的來防止晶體管進入直通,這是非常重要的。
11、關于電源吸收能量
另外一個在D類功放中引起明顯降額的原因是母線充電,當半橋拓撲在給負載輸出低頻時可以看到。要時刻記住,D類功放的增益與母線電壓直接成比例關系。因此,母線電壓波動產生失真,而D類功放中的電流流動是雙向的,則就存在了從功放返回到電源時期。大量流回到電源的能量來自于輸出LPF的電感存儲的能量。通常,電源沒有辦法吸收從負載回流過來的能量。因此,母線電壓上升,造成電壓波動。母線電壓上升并不是發生在全橋拓撲上,因為從開關橋臂同儲到由源的能源熔會在另一個橋臂消耗掉。
12、對EMI(電磁輻射)的考慮
在D功放設計中的EMI(電磁輻射)是很麻煩的,像在其他開關應用中一樣。EMI的主要來源之一是來自從高到低流動的MOSFET二極管的反向恢復電荷,和電流直通很相象。在嵌入到阻止直通電流的死區過程中,在輸出LPF中的電感電流打開體二極管。在下一個階段中,當另外一端的MOSFET在死區未打開時,體晶體管保持導通狀態,除非儲存的大量少數載波被完全復合。這個反向的恢復電流趨向于形成一個很尖的形狀,和由于PCB板和封裝雜散電感因起步希望的震蕩。因此,PCB布線設計對減小EMI和系統可靠性至關重要的。
13、D類功放中MOSFET選擇的其他考慮
*選擇合適的封裝和結構
*功放的THD、EMI和效率,還受FET的體二極管影響。縮短體二極管恢復時間(工R的并聯肖特基二級管的FET);降低反向恢復電流和電荷,能改善THD;EMI和效率。
*FET結殼熱阻要盡可能小,以保證結溫低于限制。
*保證較好可靠性和低的成本條件下,工作在最大結溫。用絕緣包封的器件是直接安裝還是用裸底板結構墊絕緣材料,依賴于它的成本和尺寸。
14、D類功放參考設計見圖6所示
*拓撲:半橋
*選用IR2011S(柵極驅動IC,最高工作電壓200V,Io+/-為1.0A/1.0A,Vout為10-20V,ton/off為80&60ns,延時匹配時間為20ns);IRFB23N15D (MOSFET功率管ID=23A,R DS=90mΩ,Qg=37nC Bv=150V To-220封裝)
*開關頻率:400KHz(可調)
*額定輸出:200W+200W/4歐
*THD:0.03%-1mhz半功率
*頻率響應:5Hz-40KHz(-3dB)
*電源:~220v±50V
*尺寸:4.0“×5.5”
15、結論
如果我們在選擇器件時很謹慎,并且考慮到精細的設計布線,因為雜散參數有很大的影響,那么目前高效D類功放可以提供和傳統的AB類功放類似的性能。
二、D類放大器散熱注意事項
摘要:D類放大器相比AB類放大器具有更高的效率和更好的熱性能。盡管如此,使用D類放大器時仍然需要慎重考慮其散熱。本應用筆記分析了D類放大器的熱性能,并通過幾個常見的例子說明了良好的設計所應遵循的原則。
連續正弦波與音樂
在實驗室評估D類放大器性能時,常使用連續正弦波作為信號源。盡管使用正弦波進行測量比較方便,但這樣的測量結果卻是放大器在最壞情況下的熱負載。如果用接近最大輸出功率的連續正弦波驅動D類放大器,則放大器常常會進入熱關斷狀態。
常見的音源,包含音樂和語音,其RMS值往往比峰值輸出功率低得多。通常情況下,語音的峰值與RMS功率之比(即波峰因數)為12dB,而音樂的波峰因數為18dB至20dB。圖1所示為時域內音頻信號和正弦波的波形圖,給出了采用示波器測量兩者RMS值的結果。雖然音頻信號峰值略高于正弦波,但其RMS值大概只有正弦波的一半。同樣,音頻信號可能存在突變,但正如測量結果所示,其平均值仍遠低于正弦波。雖然音頻信號可能具有與正弦波相近的峰值,但在D類放大器表現出來的熱效應卻大大低于正弦波。因此,測量系統的熱性能時,最好使用實際音頻信號而非正弦波作為信號源。如果只能使用正弦波,則所得到的熱性能要比實際系統差。
圖1. 正弦波的RMS值高于音頻信號的RMS值,意味著用正弦波測試時,D類放大器的發熱更大。
PCB的散熱注意事項
在工業標準TQFN封裝中,裸露的焊盤是IC散熱的主要途徑。對底部有裸露焊盤的封裝來說,PCB及其敷銅層是D類放大器主要的散熱渠道。如圖2所示,將D類放大器貼裝到常見的PCB,最好根據以下原則:將裸露焊盤焊接到大面積敷銅塊。盡可能在敷銅塊與臨近的具有等電勢的D類放大器引腳以及其他元件之間多布一些覆銅。本文的案例中,敷銅層與散熱焊盤的右上方和右下方相連(如圖2)。敷銅走線應盡可能寬,因為這將影響到系統的整體散熱性能。
圖2. D類放大器采用TQFN或TQFP封裝時,裸露焊盤是其主要散熱通道。
與裸露焊盤相接的敷銅塊應該用多個過孔連到PCB背面的其他敷銅塊上。該敷銅塊應該在滿足系統信號走線的要求下具有盡可能大的面積。
盡量加寬所有與器件的連線,這將有益于改善系統的散熱性能。雖然IC的引腳并不是主要的散熱通道,但實際應用中仍然會有少量發熱。圖3給出的PCB中,采用寬的連線將D類放大器的輸出與圖右側的兩個電感相連。在這種情況下,電感的銅芯繞線也可為D放大器提供額外的散熱通道。雖然對整體熱性能的改善不到10%,但這樣的改善卻會給系統帶來兩種截然不同的結果 - 即使系統具備較理想的散熱或出現較嚴重的發熱。
圖3. D類放大器右邊的寬走線有助于導熱
輔助散熱
當D類放大器在較高的環境溫度下工作時,增加外部散熱片可以改善PCB的熱性能。該散熱片的熱阻必須盡可能小,以使散熱性能最佳。采用底部的裸露焊盤后,PCB底部往往是熱阻最低的散熱通道。IC的頂部并不是器件的主要散熱通道,因此在此安裝散熱片不劃算。圖4給出了一個PCB表貼散熱片(218系列,由Wakefield Engineering提供)。該散熱片焊接在PCB上,是兼顧尺寸、成本、裝配方便性和散熱性能的理想選擇。
圖4. 當D類放大器工作在較高環境溫度下,可能需要如圖示的SMT散熱片(圖片來自Wakefield Engineering)。
熱計算
D類放大器的管芯溫度可以通過一些基本計算進行估計。本例中根據下列條件計算其溫度:
TAM = +40°C
POUT = 16W
效率(η) = 87%
ΘJA = 21°C/W
首先,計算D類放大器的功耗:
然后,通過功耗計算管芯溫度TC,公式如下:
根據這些數據,可以推斷出該器件工作時具有較為理想的性能。因為系統很少能正好工作在+25°C的理想環境溫度下,因此應該根據系統的實際使用環境溫度進行合理的估算。
負載阻抗
D類放大器MOSFET輸出級的導通電阻會影響它的效率和峰值電流能力。降低負載的峰值電流可減少MOSFET的I2R損耗,進而提高效率。要降低峰值電流,應在保證輸出功率,以及D類放大器的電壓擺幅以及電源電壓的限制的條件下,選擇最大阻抗的揚聲器,如圖5所示。本例中,假設D類放大器的輸出電流為2A,電源電壓范圍為5V至24V。電源電壓大于等于8V時,4Ω的負載電流將達到2A,相應的最大連續輸出功率為8W。如果8W的輸出功率能滿足要求,則可以考慮使用一個12Ω揚聲器和15V供電電壓,此時的峰值電流限制在1.25A,對應的最大連續輸出功率為9.4W。此外,12Ω負載的工作效率要比4Ω負載的高出10%到15%,降低了功耗。實際效率的提高根據不同D類放大器而異。雖然大多數揚聲器的阻抗都采用4Ω或8Ω,但也可采用其他阻抗的揚聲器實現更高效的散熱。
圖5. 選擇最佳的阻抗和電源電壓使輸出功率最大。
另外還需要注意音頻帶寬內負載阻抗的變化。揚聲器是一個復雜的機電系統,具有多種諧振元件。換言之,8Ω的揚聲器只在很窄的頻帶內才呈現出8Ω阻抗。在大部分音頻帶寬內,阻抗都會大于其標稱值,如圖6示。在大部分音頻帶寬內,該揚聲器的阻抗都會遠大于其8Ω的標稱值。然而,高頻揚聲器和分頻網絡的存在將降低阻抗值。因此必須考慮系統的總阻抗以確保足夠的電流驅動能力和散熱性能。
圖6. 8Ω阻抗、13cm口徑揚聲器的阻抗隨頻率改變而急劇變化。
結論
D類放大器的效率相比AB類放大器有很大提高。雖然這一效率優勢降低了系統設計時對散熱性能設計的要求,但仍然不能完全忽視系統散熱。但是,如果能夠遵循良好的設計原則并且設定合理的設計目標,使用D類放大器可使音頻系統設計更簡單。
三、數字功放與D類功放、模擬功放的區別
1、數字功放與D類功放的區別
常見D類功放(PWM功放)的工作原理:PWM功放只能接受模擬音頻信號,用內部三角波發生器產生的三角波和它進行比較,其結果就是一個脈寬調制信號(PWM),然后將PWM信號放大并還原成模擬音頻信號。因此,PWM功放是用脈沖寬度對模擬音頻幅度進行模擬的,其信息的傳遞過程是模擬的、非量化的、非代碼性的。并且由于目前器件性能的限制,PWM功放不可能采用太高的采樣頻率,在性能指標上尚達不到Hi-Fi級的水平。而數字功放采用一些寬度固定的脈沖來數字地量化、編碼模擬音頻信號,使音頻信號的還原更為真實。
2、數字功放和模擬功放的區別
數字功放由于工作方式與傳統模擬功放完全不同,因此克服了模擬功放固有的一些缺點,并且具備了一些獨有的特點。
1. 過載能力與功率儲備
數字功放電路的過載能力遠遠高于模擬功放。模擬功放電路分為A類、B類或AB類功率放大電路,正常工作時功放管工作在線性區;當過載后,功放管工作在飽和區,出現諧波失真,失真程度呈指數級增加,音質迅速變壞。而數字功放在功率放大時一直處于飽和區和截止區,只要功放管不損壞,失真度不會迅速增加,如圖1所示。
圖1 全數字功放與普通功放過載失真度比較
由于數字功放采用開關放大電路,效率極高,可達75%“90%(模擬功放效率僅為30%”50%),在工作時基本不發熱。因此它沒有模擬功放的靜態電流消耗,所有能量幾乎都是為音頻輸出而儲備,加之前后無模擬放大、無負反饋的牽制,故具有更好的“動力”特性,瞬態響應好,“爆棚感”極強。
2. 交越失真和失配失真
模擬B類功放在過零失真,這是由于晶體管在小電流時的非線性特性而引起的在輸出波形正負交叉處的失真(小信號時晶體管會工作在截止區,無電流通過,導致輸出嚴重失真)。而數字功放只工作在開關狀態,不會產生交越失真。
模擬功放存在推挽對管特性不一致而造成輸出波形上下不對稱的失配失真,因此在設計推挽放大電路時,對功放管的要求非常嚴格。而數字功放對開關管的配對無特殊要求,基本上不需要嚴格的挑選即可使用。
3. 功放和揚聲器的匹配
由于模擬功放中的功放管內阻較大,所以在匹配不同阻值的揚聲器時,模擬功放電路的工作狀態會受到負載(揚聲器)大小的影響。而數字功放內阻不超過0.2Ω(開關管的內阻加濾波器內阻),相對于負載(揚聲器)的阻值(4“8Ω)完全可以忽略不計,因此不存在與揚聲器的匹配問題。
4. 瞬態互調失真
模擬功放幾乎全部采用負反饋電路,以保證其電聲指標,在負反饋電路中,為了抑制寄生振蕩,采用相位補償電路,從而會產生瞬態互調失真。數字功放在功率轉換上沒有采用任何模擬放大反饋電路,從而避免了瞬態互調失真。
5. 聲像定位
對模擬功放來說,輸出信號和輸入信號之間一般都存在著相位差,而且在輸出功率不同時,相位失真亦不同。而數字功放采用數字信號放大,使輸出信號與輸入信號相位完全一致,相移為零,因此聲像定位準確。
6. 升級換代
數字功放通過簡單地更換開關放大模塊即可獲得大功率。大功率開關放大模塊成本較低,在專業領域發展前景廣闊。
7. 生產調試
模擬功放存在著各級工作點的調試問題,不利于大批量生產。而數字功放大部分為數字電路,一般不需調試即可正常工作,特別適合于大規模生產。
3、數字功放和“數字化”功放、“數碼”功放的區別
所謂的“數字化”功放只是在前置級上采用數字信號處理的方式,在模擬音頻信號或數字音頻信號輸入后,采用現有的數字音頻處理集成電路,實現一些比如聲場處理、數字延時、混響等功能,最后再通過模擬功率放大模塊進行音頻放大。其典型電路框圖如圖2所示。由圖2可知,其各模塊的接口都是采用模擬方式。而數字聲場處理模塊的大致原理框圖如圖3所示。
圖2 數字化功放電路的組成框圖 圖3 數字聲場處理模塊原理框圖
雖然目前各集成電路廠家都推出了數字聲場處理、數字卡拉OK和數字杜比解碼集成電路。但是由于目前功放大都只能接收模擬音頻信號,所以各集成電路的接口也大多是模擬的,這就需要反復地進行模/數、數/模轉換,由此會引入量化噪聲,使音質惡化。
全數字功放除了針對揚聲器的接口以外(這是因為目前揚聲器都只能接受模擬音頻信號),音頻信號在功放內部都是以數字信號的方式進行處理(包括功率放大);對于模擬音頻信號,必須轉化成數字信號后才能進行處理。
在已經具備數字音頻的時代推出數字功放,將可能對音響技術的發展產生重大影響。
四、新型綠色能效D類音頻放大器設計應用
引 言
多媒體時代,傳統A類、B類、AB類線性模擬音頻放大器因效率低,能耗大,已不能滿足電子視聽類LCD/PDP/OLED/LCOS/PDA等綠色節能、高效、體積小等新發展趨勢,而非線性音頻放大器件Class-D類功放因具備節能、高效率、高輸出功率、低溫升效應、占用空間小等優點,將被納入越來越多新產品設計中。D類放大器架構上分半橋非對稱型和全橋對稱型,而全橋類相對半橋型具有高達4倍的輸出功率,更為高效;從信號適應上分模擬型和I2S全數字型,因全數字型尚處發展階段,成本高,而模擬型因成本優勢將在未來幾年處于應用主流。本文重點剖析了全橋模擬型D類功放設計要素,實現了一種基于NXP公司新型綠色能效模擬D類功放TFA9810T電路設計,并重點對綠色節能高效、高輸出功率、低溫升效應、PCB布局、EMI抑制幾個方面進行總結分析。
1 D類功率放大器原理特點
1.1 D類放大器系統結構
D類放大器由積分移相、PWM調制模塊、G柵級驅動、開關MOSFET電路、Logic輔助、輸出濾波、負反饋、保護電路等部分組成。流程上首先將模擬輸入信號調制成PWM方波信號,經過調制的PWM信號通過驅動電路驅動功率輸出級,然后通過低通濾波濾除高頻載波信號,原始信號被恢復,驅動揚聲器發聲,如圖1所示。
1.2 調制級(PWM-Modulation)
調制級就是A/D轉換,對輸入模擬音頻信號采樣,形成高低電平形式數字PWM信號。圖2中,比較器同相輸入端接音頻信號源,反向端接功放內部時鐘產生的三角波信號。在音頻輸入端信號電平高于三角波信號時,比較器輸出高電平VH,反之,輸出低電平VL,并將輸入正弦波信號轉換為寬度隨正弦波幅度變化的PWM波。這是D類功放核心之一,必須要求三角波線性度好,振蕩頻率穩定,比較器精度高,速度快,產生的PWM方波上升、下降沿陡峭,深入調制措施參見文獻[2]。
1.3 全橋輸出級
輸出級是開關型放大器,輸出擺幅為VCC,電路結構如圖3所示。將MOSFET等效為理想開關,關斷時,導通電流為零,無功率消耗;導通時,兩端電壓依然趨近為零,雖有電流存在,但功耗仍趨近零;整個工作周期,MOSFET基本無功率消耗,所以理論上D類功放的轉換效率可接近100%,但考慮輔助電路功耗及MOSFET傳導損耗,整體轉換效率一般可達90%左右。因為轉換效率很高,所以芯片本身消耗的熱能小,溫升也才很小,完全可以不考慮散熱不良,因此被稱為綠色能效D類功放。
對全橋,進一步減小導通損耗,要使MOSFET漏源的導通電阻RON盡量小。選取低開關頻率和柵源電容小的MOSFET,加強前置驅動器的驅動能力。
1.4 LPF低通濾波級
LPF濾波器可消除PWM信號中電磁干擾和開關信號,提高效率,降低諧波失真,直接影響放大器帶寬和THD,必須設置合適截止頻率和濾波器滾降系數,以保證音頻質量。對于視聽產品,20 Hz~20 kHz為可聽聲;低于20 Hz為次聲;高于20 kHz為超聲。應用中一般設置截止頻率為30 kHz,這個頻率越低,信號帶寬越窄,但過低會損傷信號質量,過高會有噪聲混入。常用LPF濾波器一般有巴特沃思濾波器、切比雪夫濾波器、考爾濾波器三種。巴特沃思濾波器在通帶BW內最大平坦幅度特性好,易實現,因此視聽產品多采用等效內阻小,輸出功率大的LC二階巴特沃思濾波器如圖4所示。
1.5 負反饋
負反饋是LPF電路,將檢測到的輸出級音頻成分反饋到輸入級,與輸入信號比較,對輸出信號進行補償、校正、噪聲整形,以此改善功放線性度,降低電源中紋波(電源抑制比,PSRR)。負反饋可減小通帶內因脈沖寬度調制、輸出級和電源電壓變化而產生的噪聲,使輸出PWM中低頻成分總能與輸入信號保持一致,以得到很好的THD,使聲音更加豐富精確。
1.6 功耗效率分析
D類效率在THD《7%情況下,可達85%以上效率,遠高于普及使用的最大理論效率78.5%的線性功放。根本原因在于輸出級MOSFET完全工作在開關狀態。理論上,D類功放效率為:
假設D類功放MOSFET導通電阻為RON,所有其他無源電阻為RP,濾波器電阻為RF,負載電阻為RL,則不考慮開關損耗的效率為:
式中:fOSC是振蕩器頻率;tON和tOFF分別是MOSFET開、關頻率。此時效率為:
由上述公式得知,D類功放中負載RL,相對其他電阻,比值越大效率越高;MOSFET作為續流開關,所消耗的功率幾乎等于MOSFET導通阻抗上I2RON損耗和靜態電流總和,相比較輸出到負載的功率幾乎可忽略。所以,其效率遠高于線性功放,如圖5所示。非常適應現今綠色節能的要求,適合被平板等數字視聽產品規模使用。
2 D類功放需要注意的關鍵點
在D類設計應用中需注意以下幾點:
全橋MOSFET管輪流成對導通,理想狀態一對導通,另一對截止,但實際上功率管的開啟關斷有一個過程。過渡過程中,必有一瞬間,如圖3所示,在IN1/IN3尚未徹底關斷時IN2/IN4就已開始導通;因MOSFET全部跨接于電源兩端,故極端的時間內,可能會有很大的電壓電流同時加在4個MOSFET上,導致功耗很大,整體效率下降,而且器件溫升加劇,燒壞MOSFET,降低可靠性。為避免兩對MOSFET同處導通狀態,引起有潛在威脅的很大短路電流,應保證一對MOSFET導通和另一對MOSFET截止期間有一個很短的停滯死區時間(Dead-time),這個時間由Logic邏輯控制器控制,以有效保證一組MOSFET關斷后,另一組MOSFET再適時開啟,減小MOSFET損耗,提高放大器效率。
但Deadtime設置不當,將出現如下問題:
(1)輸出信號中將產生毛刺,造成電磁干擾,也即死區時間內,IN1/IN3都關斷。完全失控的輸出電壓將受到圖6(a)中體二極管電流的影響(體二極管電流的形成,參見下文EMI節),輸出波形中將出現毛刺干擾。
(2)Deadtime過大,輸出波形中出現的毛刺包含的能量將持續消耗在體二極管中,以熱能形式消耗能量,嚴重影響芯片工作穩定性和輸出效率。
(3)Deadtime過長,影響放大器線性度,造成輸出信號交越失真,時間越長,失真越嚴重。
2.2 EMI(Electro-Magnetic InteRFerence)
EMI主要由MOSFET體二極管反向恢復電荷形成,具體產生機理如圖6所示。
第一階段,MP1-MOSFET導通,有電流流過MOSFET和后級LPF電感;第二階段,全橋進入Dead-time期間,MP1本身關斷,但其體二極管依然導通,保證后級電感繼續續流;第三階段,Deadtime期結束,MN1導通瞬間,若MP1體二極管存儲的剩余電荷尚未完全釋放,則瞬間釋放上一次導通期間未釋放的存儲電荷,導致反向恢復電流激增,此電流趨向于形成一個尖脈沖,最終體現在輸出波形上,如圖6(b)所示。因此,輸出頻譜會在開關頻率以及開關頻率倍頻處包含大量頻譜能量,對外形成EMI。
為抑制EMI,以降低輸出方波頻率,減緩方波頂部脈沖為目的,將一些內部EMI消除電路新技術應用于新產品中:
(1)Dither。擴展頻譜技術,即在規定范圍內,周期性調整三角波采樣時鐘頻率,基波和高次諧波避開敏感頻段,使輸出頻譜能量平坦分散;
(2)增加主動輻射限制電路,輸出瞬變時,主動控制輸出MOSFET柵極,以避免后級感性負載續流引起高頻輻射。
2.3 印制板PCB布局設計規則
(1)因輸出信號含大量高頻方波,需將加入的低失真、低插入損耗LC濾波電容和鐵氧體電感低通濾波器件緊密靠近功放,將承載高頻電流的環路面積減至最小,以降低瞬態EMI輻射。
(2)因輸出電流大,音頻輸出線徑要寬,線長要減短,故需降低無源電阻RP和濾波器電阻RF,提高負載電阻RL比值,提高輸出效率。
(3)PCB底部是熱阻最低的散熱通道,功放底部裸露散熱銅皮面積要大,應盡可能在敷銅塊與臨近具有等電勢的引腳以及其他元件間多覆銅,裸露焊盤相接的敷銅塊用多個過孔連接到PCB板背面其他敷銅塊上,該敷銅塊在滿足系統信號走線要求下,應具有盡可能大的面積,以保證芯片內核通過這些熱阻最低的敷銅區域有最佳散熱特性。
(4)大電流器件接地端附近,多加過孔,信號若跨接于PCB兩層間,多加過孔提高連接可靠性,降低導通阻抗。
(5)信號輸入端元件焊盤和信號線與輸出端保持適當間距,關鍵反饋網絡器件置放在輸入/輸出PCB布局模塊中間,防止輸出端EMI幅射影響輸入端小信號。
(6)地線、電源線遠離輸入/輸出級,采用單點接地方法。
3 基于上述要素的綠色能效D類功放TFA9810T設計應用
3.1 TFA9810T內部結構
TFA9810T是NXP公司推出的雙通道額定輸出2×12 W的高效Class-D類功放,主要由兩組全橋功率放大器(Full-Bridge)、驅動前端、邏輯控制、OVP/OCP/OTP等保護電路、全差分輸入比較器、供電模塊等構成,如圖7所示。
其具備如下特點:可取消散熱器,有很高的可靠性,8~20 V單電源供電,外部增益可調,待機節能狀態的供電電流為微安級,耗能很小等。非常適合應用于平板類電視產品、多媒體系統、無線音頻領域。
3.2 模擬輸入級設計
TFA9810T輸入端采用可抑制共模干擾的全差分輸入電路。以圖8 AMP-Rin輸入端為例,RA128/RA133/CA139構成負反饋低通濾波器,用于衰減反饋信號中高頻載波成分。增加低頻成分反饋量,特別是直流成分。有效改善了零輸入時因輸入信號直流電平與比較器門限電壓差異形成的占空比誤差,調整RA128也可實現TFA9810T增益控制,使Au(dB)=20log(VOUT/VIN)≌20log(RA128/RA132)。器件CA153/RA132/RA133及TFA9810T內阻構成高通濾波器,用于對輸入信號的緩沖。若CA153容值過小,會影響低頻響應,理論確定公式為:
本設計取值1 μF,確定低端頻率為16 Hz,若該頻率定得太高,低端輸入電抗(如在20 Hz)會太大,可能導致輸出端較大噪聲和直流偏移噪聲(plop-noise)。反饋信號與經過緩沖的輸入音頻比較后,通過RA133進入TFA9810T進行PWM調制。為避免圖8中Rin/Lin輸入信號頻率因半導體非線性產生和頻和差頻,導致輸出端出現嘯叫聲,則通過調整電容CA123/CA145,將兩路載波頻率調差50 kHz左右。本設計中將取CA123=22 pF,CA145=47 pF,實現了Rin/Lin載頻相差50 kHz。
3.3 輸出級LPF低通濾波設計
TFA9810T輸出端低通濾波器采用二階巴特沃思濾波器方式,實際的巴特沃思二階濾波器由圖9中RCA類電子元器件CA135/RA145/CA136/LA5/CA137/CA138/RA148/CA159/CA140/CA141/RA152/LA6/CA142/CA144等構成,對PWM方波中15 Hz~20 kHz音頻成分表現為直通效應,對超過音頻范圍的20 kHz以上高頻成分呈現-12 dB/倍頻程滾降率。
簡化模型中,由Lse和Cse,R,C1構成基本巴特沃思濾波器,R和C1又構成有Zobel network的消峰電路,用于去除高頻時尖峰脈沖干擾。
3.4 溫升測試
本設計功放TFA9810T的直流電源供電15.2 V,工作環境溫度為20℃,音頻系統輸入為2Vp未調制的1 kHz單音頻信號,匹配負載為8 Ω揚聲器,調整音頻輸出功率21 W,持續工作30 min,使用溫度測試設備測得TFA9810T殼體中央最高溫度為45℃,溫升僅25℃,無需再增加散熱片。
3.5 音頻A/D/A測試分析
圖10測試了TFA9810T功放音頻輸入端為1 kHz的2V。單音頻信號波形,輸出端揚聲器端到GND間為12.84V。,圖9中LPF。濾波前功放輸出的PWM波形。圖11~圖13分別拓展了圖10中A/B/C區。
由圖10~圖13可知,輸入波形疊加有高頻雜波。說明前端引入不良干擾,需進一步分析改進;輸出波形平滑,無交越失真,Deadtime特性較好;輸入/輸出正弦波相位相反,直接由電阻RA128等形成閉環負反饋通路,降低了噪聲干擾,并進行增益控制。A,B,C區的拓展圖輸出正弦波峰、波谷、S區域處PWM的頻率分別為238.8 kHz,224.9 kHz,626.4 kHz,占空比不同,符合三角波采樣特性。圖中波峰、波谷處PWM脈沖fall下降沿和rise上升沿更為陡峭,相比S形區域,包含大量高頻諧波,易引起EMI輻射,但通過巴特沃思二階濾波器濾波后,輸出正弦波良好,無明顯高頻雜波迭加,EMC測試也無明顯對外輻射頻率,滿足了設計需要。
3.6 功率、效率測試
圖14測試了在圖10狀態下功放TFA9810T的供電電壓、電流實際波形。
由圖10可知,功放單端輸出功率為:
4 結 語
介紹了模擬全橋D類功放拓撲結構,詳細探討了通過二階巴特沃思濾波器設計和功放PCB布局,抑制了因Deadtime等產生的EMI。最后基于NXP公司D類功放TFA9810T,實現了一種新型綠色能效雙通道D類音頻放大器設計。仿真和測試結果表明,在供電電壓約為15 V時,放大器可向兩8 Ω揚聲器提供10 W×2的輸出功率,轉換效率達90%,總諧波失真小于7%,1 kHz正弦波音頻輸出無交越失真,無明顯EMI干擾,功放殼體相對溫升25℃。隨著當今社會節約能源的要求,該類綠色能效設計將在未來幾年達到更廣泛的應用。
評論